

Strategies to Mitigate Scour Critical Structures

Dan Ghere Hydraulics Engineer (708) 283-3557 dan.ghere@dot.gov

Support Material

- HEC 23, Bridge Scour and Stream Instability Countermeasures, Volumes 1 & 2
- NCHRP 135048, Countermeasure Design for Bridge Scour and Stream Instability
- NCHRP Report 568, Riprap Design Criteria, Recommended Specifications, and Quality Control
- NCHRP Report 593, Countermeasures to Protect Bridge Piers from Scour
- HEC 18, Evaluating Scour at Bridges

Design Frequency

8

Risk Based Design

HEC 18 Tables 2.1 & 2.3 combined

Design Flood Frequencies					
Hydraulic DesignScour DesignFlood Frequency,Flood Frequency,QDQS		Scour Design Check Flood Frequency, Q _C	Countermeasure Design Flood Frequency, Q _{CM}		
Q ₁₀	Q ₂₅	Q ₅₀	Q ₅₀		
Q ₂₅	Q ₅₀	Q ₁₀₀	Q ₁₀₀ Q ₂₀₀		
Q ₅₀	Q ₁₀₀	Q ₂₀₀			
Q ₁₀₀ Q ₂₀₀		Q ₅₀₀	Q ₅₀₀		

Probability of Exceedance Example

Bridge Design Life – 75 Years

- Hydraulic Design Flood Frequency Q₅₀
- Probability of Exceedance ^{78%}
- Scour Design Flood Frequency Q₁₀₀
- Probability of Exceedance <u>59.2%</u>
- Scour Check Flood Frequency Q₂₀₀
- Probability of Exceedance <u>31.3%</u>

Flood Exceedance Probability HEC 18, Appendix B

Table B.1. Probability of Flood Exceedance of Various Flood Levels.							
Flood Frequency	Probability of Exceedance in N Years (or Assumed Bridge Design Life)						
Years	N = 1	N = 5	N = 10	N = 25	N = 50	N = 75	N = 100
10	10.0%	41.0%	65.1%	92.8%	99.5%	100.0%	100.0%
25	4.0%	18.5%	33.5%	64.0%	87.0%	95.3%	98.3%
50	2.0%	9.6%	18.3%	39.7%	63.6%	78.0%	86.7%
100	1.0%	4.9%	9.6%	22.2%	39.5%	52.9%	63.4%
200	0.5%	2.5%	4.9%	11.8%	22.2%	31.3%	39.4%
500	0.2%	1.0%	2.0%	4.9%	9.5%	13.9%	18.1%

Hydraulic Countermeasure Types

- Riprap
- Partially Grouted Riprap
- Articulated Concrete Blocks
- Gabions & Gabion Mattresses
- Concrete Armor Units (Toskanes, A-Jacks, etc.)
- Spurs
- Bendway Weirs
- Guide Banks
- Longitudinal Peaked Stone Toe Protection

Riprap Countermeasures

- Riprap Revetment channel bank
- Riprap Embankment Overtopping
- Riprap at Bridge Piers
- Riprap at Abutments
- Riprap for Bottomless Culverts

Similarities

- Stone quality specification
- Gradation specifications
- Filter requirements

Ø

Differences

- Equations for sizing
- Layer thickness
- Toe detail

Ø

- Lateral extent
- Filter extent

HEC 23 Riprap Equations

Revetment (DG 4)

$$\mathsf{D}_{30} = y \, (\mathsf{SfCsCvCT}) \left[\frac{V}{(\mathsf{K}(\mathsf{Sg}-1)\mathsf{gy})^{1/2}} \right]^{2.5}$$

Bridge Piers (DG 11)

$$\mathsf{D}_{50} = \frac{0.692 \, V^2}{(Sg - 1)2g}$$

Abutments (DG 14)

$$D_{50} = \frac{ky}{(Sg-1)} \times \frac{V^2}{gy} \quad \text{for } \mathbf{F}_{\mathsf{R}} \leq 0.8$$
$$D_{50} = \frac{ky}{(Sg-1)} \times \left[\frac{V^2}{gy}\right]^{0.14} \quad \text{for } \mathbf{F}_{\mathsf{R}} > 0.8$$

Riprap Calculator

- Revetment
- Pier
- Abutment/Guide Bank
- Spur
- Embankment Overtopping
- Culvert Outlet
- Open Bottom Culvert
- Wave Attack

💷 Riprap Analysis

Structure type: Pier		-]	Geotextile/Granular Filter Des
Parameter	Value	Units	Notes	
Channel Parameters				
Select Channel	<create new=""></create>	·		
	Channel Calculator			
Input Parameters				
	Transfer Values From Channel Calculator			
Velocity Input Type	average velocity at the bridge	·		
Channel Average Velocity (at the bridge)	6.600	ft/s		
Velocity Adjustment Factor for location in the channel	1.300		Ranges from 0.9 for a pier near the bank ir	n a straight reach to 1.7 for a
Pier Shape Factor	round-nose pier	·		
Pier Width (normal to flow)	2.500	ft		
Contraction Scour Depth	3.000	ft		
Bed Form Depth	0.000	ft		
Specific Gravity of Riprap	2.650			
Results				
Design Velocity	12.870	ft/s		
D50	12.955	in		
D50	1.080	ft		
Riprap Shape	Riprap shape should be angular			
Riprap Class				
Riprap Class Name	CLASS IV			
Riprap Class Order	4			
D15	10.50	in	This value is an 'average' of the size fraction	on range for the selected ripra
D50	15.50	in	This value is an 'average' of the size fraction	on range for the selected ripra
D85	21.00	in	This value is an 'average' of the size fraction	on range for the selected ripra
D100	30.00	in	This value is an 'average' of the size fraction	on range for the selected ripra
Layout				
Depth of Riprap below Streambed	46.500	in	Design thickness of riprap below streambed	d is greatest of Contraction Sc
Minimum Riprap Extent	5.000	ft	See HEC 23, Figure 11.15	
Filter Placement Extent	3.333	ft	See HEC 23, Figure 11.15	
•				

•

OK

💷 Riprap Analysis

Structure type:	Abutment/Guide Bank	•		Geotextile/Granular Filter Design
Parameter		Value	Units	Notes
Channel Paramet	ters			
Select Channel		<create new=""></create>		
		Channel Calculator	1	
Input Parameter	S			
		Transfer Values From Channel Calculator		
Structure Type		abutment 🔹		
Abutment Type		spill-through abutment		
Set-back Length		50.000 f		The set-back length is the distance from the i
Main Channel A	verage Flow Depth	15.000	ft	
Flow Depth at 1	oe of Abutment	6.000	ft	
Total Discharge		12000.000	cfs	Calculations will use either total or overbank
Overbank Disch	arge	4000.000	cfs	
Total Bridge Are	ea	2000.000	ft^2	
Setback Area		300.000	ft^2	
Maximum Chan	nel Velocity	6.600	ft/s	
Specific Gravity	of Riprap	2.650		
Results				
Set-back ratio		3.333		
Characteristic V	elocity	6.000	ft/s	
Froude Number	at the Abutment Toe	0.432		
Abutment Coef	ficient	0.890		
D50		7.242	in	
D50		0.604	ft	
Riprap Shape		Riprap shape should be angular		
Riprap Class				
Riprap Class Na	me	CLASS II		
Riprap Class Or	der	2		
D15		7.00	in	This value is an 'average' of the size fraction
D50		9.50	in	This value is an 'average' of the size fraction
D85		13.00	in	This value is an 'average' of the size fraction
D100		18.00	in	This value is an 'average' of the size fraction
Layout				
Riprap Thickness		18.000	in	
Minimum Horiz	ontal Extent of the Toe Apron from the Abutment Toe	12.000	ft	
Minimum Exter	nt of "Wrap Around" beyond the Abutment Radius, along the Approach Embankment	25.000	ft	See HEC 23, Figure 14.7
•	"			4

OK

Cancel

×

- Abutments: Not less than 1.5 D₅₀ or D₁₀₀
- Channel Lining: Not less than 1.5 D₅₀ or D₁₀₀
- Piers: 3D₅₀ or depth of contraction scour. When placed under water increase thickness by 50 %.

Lateral Extent

HEC 23 recommends twice pier width.

I recommend a minimum of 10 ft. to account for effects of debris or changes in skew over time. Note: filter extends only 2/3 riprap extent at piers.

Figure 11.15. Riprap layout diagram for pier scour protection.

Lateral Extent at Abutment (minimum)

- Upstream cover abutment spill thru cone.
- Downstream 2 times flow depth or 25 ft. past cone.
- Toe (apron) 2 times flow depth or 25 ft.

Abutment Toe Details

Figure 14.8. Typical cross section for abutment riprap (Lagasse et al. 2006).

Keys to Successful Riprap Installations

Stone Quality

Need strong quality spec and material inspection procedures.

• Excavation for placement

Excavate to plan depth and finish surface for uniform placement depth.

- No mounding at piers or for toe protection.
- Install and anchor filters underwater
 Filter controls the movement of soil particles. Riprap holds filter in place.

- Granular
- Geotextile
- Combined Geotextile with granular cover Granular cover provides a layer of protection from puncturing by riprap placement.

Installations Underwater

DOTs report that few riprap installations in water have filters placed during construction.

Why?

Contractors say it's too difficult and they don't know how.

Environmental Concerns

- Increased water surface caused by obstructions
- Maintaining natural river bed
- Obstruction to fish passage
- Length of loss of native stream bed and banks

What's wrong with this installation?

Construction Supervision

Verify

- Excavation and surface preparation
- Placement of filter
- Stone size gradation & quality (check before installation)
- Thickness of layer
- Lateral Extent
- Elevation of finished surface (Not to create mounding on streambed)

Maintenance Inspection

Changed appearance

- Lose of stones
- Reduced stone size (freeze thaw or abrasion)
- Filter is visible through voids
- Lateral extent
- Sloughing or sliding down bank

Document findings (text description and photos)

Poor Quality Stone

Essentials for a Durable lasting Riprap Countermeasure

- "A" Quality Stone
- Proper size and gradation of stone
- Filter under countermeasure
- Layer thickness
- Maintenance inspection and repair

Alternatives to Riprap

Articulated Concrete Blocks (Allows some flexibility)

- Interlocking geometries
- Cable tied blocks
- Interlocking or cabled and vegetated

Applications for Articulated Blocks

- Insufficient vertical clearance for equipment for riprap installation.
- Necessary riprap stone size not available.
- Necessary stone quality not available.

Requires well prepared uniform surface for installation.

Articulating Block Systems

Interlocking

Layout Detail

Alternatives to Riprap

Gabions and Gabion Mattresses

Applications for Gabions and Mattresses

- Required riprap size not available.
- High velocity and limited space for placing large size stone.
- Can serve as retaining wall as well as scour countermeasure.

Partially Grouted Riprap

Avoid Fully Grouted Riprap

Alternatives to Riprap

Concrete Armor Units (Toskanes, A-Jacks, etc.)

Toskanes placed like Riprap

Figure 5.23. Laboratory study of Toskanes for pier scour protection.

A-Jacks Installed as a Unit

Concrete Armor Units: A-Jacks

Hard Points – Similar to Bend Way Weirs

Current Countermeasure Research

- NCHRP 24-42, Techniques for Installation of Filters Underwater. (2-yr. project just getting started)
- FHWA USGS Interagency Project. Performance Evaluation of Existing Countermeasures. (Feb. 2016)

Objective: Inspect and evaluate the effectiveness of existing policies, design procedures, and installation of scour

countermeasures.

Provide comments on evaluation sheet if interested in webinar.

Identify specific coverage areas of interest.

FHWA Hydraulics Website:

www.fhwa.dot.gov/engineering/hydraulics

Dan Ghere FHWA Hydraulics Engineer Matteson, Illinois dan.ghere@dot.gov (708) 283-3557