Fatigue in Winter Maintenance Operations

Michigan Winter Operations Conference October 20, 2015

> Matt Camden Research Associate mcamden@vtti.vt.edu

Acknowledgements

 This project was funded by the Clear Roads pooled fund TPF-5(218)

http://clearroads.org/wp-content/uploads/dlm_uploads/11-05-Factors-Causing-Fatigue-Final-Report_MnDot.pdf

- VDOT
- Allen Williams

Advancing Transportation Through Innovation

Project Overview

• Goal:

Cost-effective, realistic recommendations for reducing or eliminating fatigue

- Focus areas:
 - Work and rest schedules
 - Contributing factors of fatigue-related incidents
 - Countermeasures to reduce fatigue and potential incidents

Advancing Transportation Through Innovation

How did we do this?

- Three data collection approaches
 - Literature review
 - Questionnaires
 - Naturalistic data
 - Driving
 - Sleep

UirginiaTech

Advancing Transportation Through Innovation

4

11/6/2015

Literature Review Summary (1 of 3)

- Lack of research with winter maintenance operators
- Focused on fatigue/drowsiness in trucks
 - Heavy vehicle
 - Inconsistent, varying schedules
 - Long shifts
- Fatigue in 15% to 30% of crashes

WirginiaTech Transportation Institute

Advancing Transportation Through Innovation

Literature Review Summary (2 of 3)

- Two types of fatigue
 - Task-related
 - Sleep-related

WirginiaTech Transportation Institute

Advancing Transportation Through Innovation

Literature Review Summary (3 of 3)

- Ways to reduce fatigue
 - Reduce stress
 - Schedules with opportunities for rest/sleep
 - Increase knowledge of fatigue
 - Cab/equipment design
 - Increase off-duty rest
 - Fatigue management technologies

Advancing Transportation Through Innovation

Naturalistic Driving Methods

- 4 VDOT operators
- 2 instrumented trucks
- Drove for 3 consecutive months
- 2 drove night shift, 2 drove day shift
 - 7p to 7a
 - -7a to 7p

WirginiaTech. Transportation Institute

Advancing Transportation Through Innovation

Why Use Naturalistic Data?

- No experimenter present; no specific instructions
- Highly capable data acquisition systems
 5 cameras and various sensors
- Data collected <u>continuously</u>
- Able to get detailed pre-crash/crash data

WirginiaTech Transportation Institute

Advancing Transportation Through Innovation

What are we looking for?

- What do winter maintenance operators encounter on a daily basis?
- What happens during winter emergencies?
- How does sleep affect safety during winter emergencies?

Test Vehicles

Cameras

Video

WirginiaTech. Transportation Institute

Video Disclaimer

The research participants you are about to see have agreed for VTTI to show clips of their study data at meetings and conferences. However, the audience is not permitted to video tape or otherwise record these clips, so please put away your phone

Advancing Transportation Through Innovation

Example – Crash Relevant Conflict

Advancing Transportation Through Innovation

Example – Near Crash

Advancing Transportation Through Innovation

Example - Crash

Advancing Transportation Through Innovation

Sensors

- Jbus
- GPS
- Yaw Sensor
- X/Y accelerometer
- Vehicle network

Advancing Transportation Through Innovation

18

11/6/2015

Event Triggers

Trigger Type	Definition	Description
Longitudinal	Hard braking or	Acceleration or
Acceleration	sudden acceleration	deceleration greater
		than or equal to 0.20
		<i>g</i> . Speed greater than
		or equal to 1 mph (1.6
		km/h).
Swerve	A sudden "jerk" of the	Swerve value greater
	steering wheel to	than or equal to 2
	return the truck to its	degrees. Speed
	original position in the	greater than or equal
	lane.	to 15 mph (24.14
		km/h)

Apply Data Directory

- Identified a number of variables describing the situation
 - Pre-event movement
 - Critical reason for the conflict
 - Distractions
 - Road condition
 - Weather condition
 - Winter emergency
 - Observer rating of drowsiness

Classify Incident Type

Event Type	Description			
Crash	Any contact with an object, either moving or fixed, at any speed			
Crash: Low- hanging Branch	Any contact with a low-hanging tree branch at any speed.			
Curb Strike: Avoidable	Any contact with a curb or median where it is apparent that the driver could have performed a maneuver to avoid the contact.			
Curb Strike: Unavoidable	Any contact with a curb or median where it is apparent that the driver could not have performed a maneuver to avoid the contact.			
Near-crash	Any circumstance that requires a rapid, evasive maneuver (e.g., hard braking, steering) by the subject vehicle (SV) or any other vehicle, pedestrian, cyclist, or animal to avoid a crash.			
Crash-relevant Conflict	Any circumstance that requires a crash-avoidance response on the part of the SV or any other vehicle, pedestrian, cyclist, or animal that was less severe than a rapid evasive maneuver (as defined above) but greater in severity than a normal maneuver.			

How did we measure sleep?

Advancing Transportation Through Innovation

Summary of Naturalistic Data

Participant #	Winter Emergency Video (hr:min:sec)	Non-winter Emergency Video (hr:min:sec)	Total Video (hr:min:sec)	Acceleration Triggers	Deceleration Triggers	Swerve Triggers
1	102:07:35	2:00:44	104:08:19	820	1,449	2,822
2	106:52:25	5:00:13	111:52:38	1,626	890	6,505
3	65:44:34	12:49:02	78:33:36	1,349	1,238	4,796
4	64:13:13	10:05:21	74:18:34	646	1,167	2,717
Total	338:57:47	29:55:20	368:53:07	4,441	4,744	16,840

Crash Severity	Number (%)		
Crash	3 (3.26%)		
Crash: Low-hanging Branch	16 (17.39%)		
Curb Strike: Avoidable	3 (3.26%)		
Near-crash	21 (22.83%)		
Crash-relevant Conflict	49 (53.26%)		
Total	92 (100%)		

Driver Fatigue Example 1

Advancing Transportation Through Innovation

Driver Fatigue Example 2

Advancing Transportation Through Innovation

Driver Fatigue Example 3

Advancing Transportation Through Innovation

11/6/2015

Results – Time of Day

11/6/2015

Results – Time on Task

UirginiaTech.

Transportation Institute

11/6/2015

Fatigue

Participant #	Total Number of SCEs	Total Number of Fatigue-related SCEs	Percent of SCEs Where Driver was Drowsy
1	52	33	63.5%
2	12	N/A	N/A
3	16	0	0%
4	12	0	0%
Total	92	33	35.9%

Advancing Transportation Through Innovation

Actigraph Data

Participant #	Total Minutes Worn	Total Bad Minutes	Percent Bad Minutes
1	128,729	19,123	14.86 %
2	129,065	15,244	11.81 %
3	129,029	12,289	9.52 %
4	130,044	6,956	5.35 %
Total	516,867	53,612	10.37 %

Participant #	Daily Sleep	Daily Sleep during Non- winter Emergency	Sleep 24 Hours Prior to a Winter Emergency	Sleep during Consecutive Winter Emergency Shifts	Sleep 24 Hours Prior to SCE
1	8.05	8.63	6.31	7.48	4.55
2	10.04	10.66	8.58	8.71	8.83
3	8.12	8.10	8.26	8.32	8.02
4	8.64	8.53	8.31	8.73	7.81
Average	8.71	8.98	7.87	8.31	7.30

WirginiaTech. Transportation Institute

Questionnaire Overview

- Two parallel questionnaires
 - Maintenance managers
 - Winter maintenance operators
- Assessed
 - Work hours, type of equipment used, freedom to refuse work due to fatigue, rest periods, fatigue awareness, overtime, medical issues, and fatigue management strategies

Summary of Questionnaire Results

- 1,043 winter maintenance operators
- 453 maintenance managers
- 24 participating states

Advancing Transportation Through Innovation

Use and Effectiveness of Breaks in Reducing Fatigue

Transportation Institute

Managers' Suggestions to Improve Safety

Advancing Transportation Through Innovation

Equipment-Related Suggestions

VirginiaTech Transportation Institute

Management-Related Suggestions

Advancing Transportation Through Innovation

Drivers' Suggestions

Transportation Institute

Discussion (1 of 2)

- The majority of SCEs (97.8%) occurred during a winter emergency
- The majority of SCEs (56.5%) occurred between 12:00 a.m. and 6:00 a.m.
- Almost all the drowsy driving SCEs (97.0%) occurred between 12:00 a.m. and 6:00 a.m.
- Fatigue was the critical reason in 28.3% of the SCEs
- Driver inattention/distraction was a contributing factor in 59.8% of the SCEs

Advancing Transportation Through Innovation

11/6/2015

Discussion (2 of 2)

- Operators averaged less sleep during winter emergencies
- Operators averaged less sleep prior to a SCE
- Appeared there was knowledge, but less use

Advancing Transportation Through Innovation

39

11/6/2015

Final Recommendations (1 of 2)

- Encourage use of breaks/naps
- Encourage winter maintenance operator fatigue reporting
- Increased vehicle maintenance
- Investigate winter emergency shift start/end times (including shift length)
- Offer shift options

Advancing Transportation Through Innovation

Final Recommendations (2 of 2)

- Involve winter maintenance operators in the decision-making process
- Increase personal interactions with winter maintenance operators
- Maximize off-duty rest

UirginiaTech. Transportation Institute

Future Research

- Data showed some interesting trends
- Need more research
 - Large scale naturalistic study with more trucks and operators
 - Log books to investigate naps
 - Design an FMP for winter maintenance operators
 - <u>www.nafmp.com</u>
 - Investigate equipment-related fatigue

Advancing Transportation Through Innovation

Advancing Transportation

Through

Innovation

Questions?

Matt Camden mcamden@vtti.vt.edu 540-231-1503

