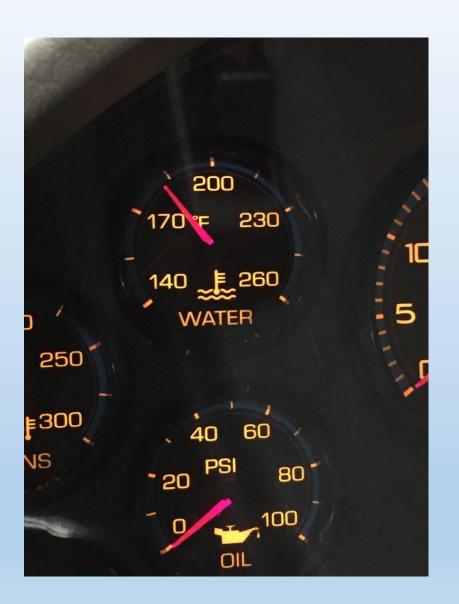
2015 Winter Operation's Conference Bellaire, Michigan October 21, 2015 Presented by Lee Schley

INNOVATIONS

OIL CHANGE INTERVAL


Innovation Basis

- Current State of Michigan policy states that vehicle oil change interval is 350 hours on Winter Maintenance Trucks (04 Units).
- Oil Change Innovation at the St. Ignace Maintenance Garage recommends extending the oil change interval to 500 hours.
- Policy also states that oil is to be sampled and tested every oil change on all MDOT Winter Maintenance Trucks.
- We reviewed oil samples from the past 18 months at every oil change. The results showed that there was significant service life remaining at the recommended change interval.
- The following examples will demonstrate the potential cost savings for the State of Michigan.

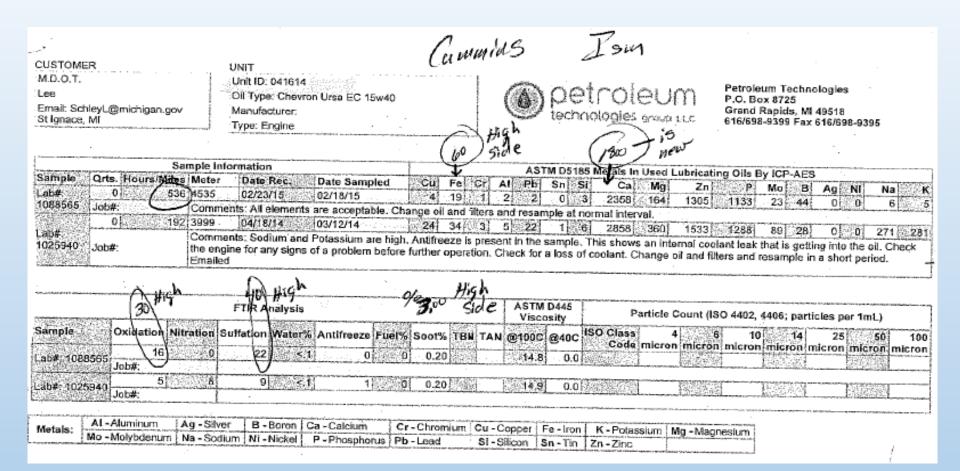
Winter Maintenance Fleet Truck

• Engines used in these vehicles are either Maxx Force or Cummins Diesels

Ideal Conditions

- The Ideal engine temperature at which the oil sample is collected is around 180°.
- In cold weather, trucks are left idling outside for 15 minutes to achieve the ideal engine temperature before collecting a sample.

SAMPLING INSTRUCTIONS AND PRECAUTIONS


The sample should be taken NOT MORE THAN 30 MINUTES after shutdown, and the oil should have been in service
for at least 10 hours or 500 miles, before the oil can accurately reflect wear conditions.

AVOID CONTAMINATION OF SAMPLE.

- Clean around the drain plug before draining. Remove drain plug, and when about half the oil has run out, catch the sample by inserting the bottle into the oil stream. The bottle should be at least 3/4 filled.
- Do not remove the bottle cap until you are ready to take the sample, and recap the bottle immediately after filling. Take care not to confuse samples from different units.

OR

Remove sample with a suction pump by inserting the siphon tube down the dipstick tube or into the sump/reservoir.
 The siphon tube must be replaced after each sample.

At 536 hours of service, oil life remaining is 45%+.

Cummins

2/2/15

CUSTOMER

M.D.O.T.

Lee

Email: SchleyL@michigan.gov St Ignace, MI UNIT

Unit ID: 041593.

Oil Type: Chevron Ursa EC 15w40

Manufacturer:

Type: Engine

petroleum technologies gross sus

Petroleum Technologies P.O. Box 8725 Grand Rapids, MI 49518 616/698-9399 Fax 616/698-9395

Sample Information ASTM D5185 Metals In Used Lubricating Oils By ICP-AES
Sample: Orts Hours/Miles Meter Date Rec. Date Sampled Cu Fe Cr Al Pb Sn Si Ca Mg Zn P Mo B Ag Ni Na K
Lab# 0 10328 142339 02/05/15 02/02/15 3 22 1 3 2 0 5 2226 187 1290 1021 24 42 0 0 2 0
1085195 Job#: Comments: All elements are acceptable. The oil is reusable. If reused, please resample at normal interval, NOTE-The oil is at about 35 % use all at
this point, Emailed

F3 [40]			
30 FTIR Analysis	ASTM D445 Viscosity	Particle Count (ISO 4402, 4406;	particles per 1mL)
Sample . Oxidation Mitration Sulfation Water Antifreeze Fuel	The second secon	ISO Class 4 6 10 Code micron micron micron micro	14 25 50 100
Lab#; 1085195 Job#: 7 7 18 <1 0 0	0.22 7.8) 14.9 0.0		STATE OF THE CONTINUE OF THE C
the state of the s			1

Me	tals:				Ca - Calcium	Cu - Copper	Fe-Iron	K - Potassium M	g - Magnesium
		Mo - Molybdenum	Na - Sodium	Ni - Nickel	P - Phosphorus	 Sī - Silicon	The first terminal and the second	The second secon	9

• At 439 hours of service, oil still has 65% remaining.

CUSTOMER
M.D.O.T.
Lee
Email: SchleyL@michigan.gov
St Ignaca, MI

Unit ID 041643
Oli Type: 157940
Menufacturer:
Type: Engine

Chumin

Petroleum Technologies P.O. Box 8725 Grand Rapids, MI 49518 616/698-9399 Fax 616/698-9395

			ma. I																	
	Sample Information	n	March				AST	IM D	5185	Met	als In U	sed Lu	ubricații	ıg Oils i	ву јСј	P-AE	8		**	-
Sample Orts.	Hours/Miles Meter	Date Rec.	Date-Sampled	Cu	Fe	Cr	AL	Pb	Sn	Si	Ca	Mg	Zn	P	Мо	В	Ag	NI	Na .	Κ
Lab# 1025938 0	358 358	04/18/14	03/10/14	1 بر	9	- 1	2	-0	0	. 5	2726	495	1556	1302	52	39	0	0	1	1.
Job#.	Comme	nts: All elemen	ts are acceptable. In	e oil is	reus	able.)f ret	ised	, plea	ise n	esample	at no	rmal inte	erval.						1

		٠.	High	1 (u	6)							_								
		5 0		1 - 1	nalysis						ASTM Visco		F	Particle C	ount (IS	O 4402,	4406; pa	rticles pr	er 1mL)	
Sample	Oxidat	on On	Nitration	Sulfation	Water%	Antifreeze	Fuel%	Soot%	TBN	TAN	@100C	@40C	ISO Class	4 micron	micron	10 micron	14 micron	25 micron	50 micron	100 micron
Lab#: 1025938	Joh#	Ĭ	8	_(*	<1	0	0	0.20			14.9	0.0								

Metals:	Al - Aluminum	Ag - Silver	B - Boron	Ca - Calcium	Cr - Chromium	Cu - Copper	Fe-Iran	K - Potassium	Mg - Magnesium
	Mo - Molybdenum	Na - Sodium	Ni - Nickel	P - Phosphorus	Pb - Lead	SI - Silicon	Sn - Tin	Zn -Zinc	

• At 355 hours of service, only 5 hours over recommended interval, oil life is still has approximately 75%+ oil life remaining.

CUSTOMER UNIT M.D.O.T. Unit 10: 044021 Petroleum Technologies Lee P.O. Box 8725 Oil Type: Chevron Ursa EC 15w40 Grand Rapids, MI 49518 Email: SchleyL@michigan.gov Manufacturer: 616/698-9399 Fax 616/698-9395 Stignace, Mi Type: Engine Sample Information ASTM 05185 Metals in Used Lubricating Oils By ICP-AES Sample Qrts. Hours/Miles Meter Date Rec **Date Sampled** Sn Mo B Ag NI Zπ Na K 31431 71267 02/04/15 02/02/15 1411 [[6] [133] Lab# Comments: Iron and Aluminum appear high. This is likely due to the break-in wear of the new engine and is normal. Suggest changing the oil and 1085089 filters and resampling at a normal interval. Oumstor ASTM D445 FTIR Analysis Particle Count (ISO 4402, 4406; particles per 1mL) Viscosity Oxidation Nivation Sulfation Water Antifreeze Fuel Soot TBV TAN @100C @40C ISO Class Sample 100 Code micron micron micron micron micron micron micron 0.70 15.0 Lab#: 1085089 A1-Aluminum Ag - Sitver B - Boron i Ca - Calcium Cr - Chromium | Cu - Copper | K - Potassium | Mg - Magnesium Fe - Iron Metals: Mo - Molybdenum | Na - Sodium | Ni - Nickel | P - Phosphorus | Pb - Lead Si - Silicon | Sn - Tin | Zn - Zinc

At 675 hours, this oil test shows 80% expiration of the oil life.

CUSTOMER M.D.O.T. Lee Unit ID: 42 Oil Type: Chevron Ursa EC 15w40 Manufacturer: St Ignace, MI Unit ID: 42 Type: Chevron Ursa EC 15w40 Type: Engine				sa EC 15w40			PERMITTAL SE	Detr echnolo			P.O. Gra	oleum Tec Box 8725 nd Rapids 698-9399	, MI 4951	В	TO TO Calcium in more non-seen	
[Sampl	Information	1		Τ		AST	A D5185 M	etals In U	Jsed Lub	ricating O	ils By ICP	-AES		
Sample	Orts. Hours/		Mar decorate and a second	PERSONAL PROPERTY.	te Sampled	Cu	Fe Ct	Al Pb	Sn Si		Mg	Zn	27.200 Edward	оВ	Ag ∴NI	Na K
1995	42	439 /35	5 01/19	15 12	/30/14	2	37	10 1	0 5	2196	173	1192	1018 2	2 30	0 0	1 0
Lab# 1081169	Job#:	leve	nments: All e els are low an ger drain inte	id show only	acceptable. The about 50% of th	oil is re e oil life	usable. If re has been	eused, plea used. The	se resamp BN is with	ole at nom in limits.	mal interv This show	val. NOTE: ws that the	The Oxida oil can co	ation, Nit ntinue to	ration and S be used at	a
					l			ASTM	0445							
1			FTIR A	nalysis				Viscos		Par	ticle Cou	int (ISO 44	102, 4406;	particles	per 1mL)	,
Sample	Oxidatio	g Nitratio	9 /14	Water% An	itifreeze Fuel% 0 0	1	TBN TAN	1 (±100€)	0.0 ISO	Class Code n	4 nicron m	6 nicron mic	10 ron micr	-0.00	25 50 on micron	100 micron

• Example of an oil test result on a Maxx Force engine WMT that has been serviced at 439 hours and has still has 50% oil life remaining.

Cr - Chromium | Gu - Copper | Fe - Iron |

Si -Silcon | Sn - Tin | Zn - Zinc

K - Potassium | Mg - Magnesium

As shown on this sample results, this oil is 89 hours over recommended interval.

B - Boron | Ca - Calcium

Mo - Molybdenum Na - Sodium Ni - Nickel P - Phosphorus Pb - Lead

AI - Alumicum

Metals:

Ag - Silver

St. Ignace Garage Heavy and Light Fleet Examples of Remaining Oil Service Life

Truck #	Recommended Oil change interval	Actual Hours	Oil Service Life Remaining	Engine Type
04-1614	350	536	45%	Cummins
04-1593	350	439	70%	Cummins
04-1643	350	355	83%	Cummins
04-4021	350	675	20%	Maxx Force
04-3042	350	439	50%	Maxx Force
03-4872	150	*150	Acceptable- Other parameters in play	V8- Gas; 5.4L
03-2073	150	209	80%	Powerstroke Diesel 6.0

^{*}Note: At 150 hours, mileage on this vehicle, a Ford F-250 with a 5.4 Liter engine, was 8,656 miles.

Winter Maintenance Truck Cost Savings

350 hour vs 500 hour service	Chevron Ursa 15w40 350hrs	Chevron Ursa 15w40 500hrs
Trucks	12	12
Hours Run Per Year (Est.)	1,050	1,050
Oil Changes Per Year	3.0	2.1
Oil Capacity (Gallons)	11	11
Oil Change Labor Hours	3	3
Labor Rate	\$41.83	\$41.83
Oil Change Labor/Year	\$5,270.58	\$3,689.41
Cost of Motor Oil (Per Gallon)	\$6.25	\$6.25
Cost of 1 Oil Change	\$68.75	\$68.75
Oil Cost/ Year / Truck	\$206.25	\$144.38
Total Oil Cost / Year	\$2,475.00	\$1,732.56
Annual Total Oil Change Cost	\$7,745.58	\$5,421.97
Savings on	entire fleet:	\$2,323.61

Conclusion

- This innovation saves MDOT approximately \$2,323.61 annually at one Maintenance Facility alone, which contains 12 Winter Maintenance Trucks.
- The cost savings potential when this innovation is applied statewide would be significant.
- The recommendation is to go to a 500 hour oil change interval for Winter Maintenance Trucks.

