Yeah, There is a Difference Measuring Road Weather and Using it!

Jon Tarleton Head of Transportation Marketing – Meteorologist

Twitter: @jontarleton

What are we going to talk about?

- The weather of course! But when and what matters!
- The weather before, during, and after a storm.
- The weather around frost.
- Let's start with nothing and build on it.
- When we are done you will know what information is good information!

Let's start at the beginning!

You just got your fleet of new plows!

But otherwise you are Anytown, USA

Page 6 © Vaisala 10/20/2016

Approaching winter storm

VAISAL

Air temperature

Critical in telling us the type of precipitation.

- How do we measure it?
 - Measured from 6ft off the ground
 - In a white vented enclosure
- Combined with wind it has an impact on our road surface.

Thermodynamics 101

 To understand how the air impacts our pavement we must understand how heat transfers from objects, and between the air and objects.

Wind

Wind – An important piece of the weather

- Lows typical move from southwest to northwest.
- System may not always contain all of the precipitation types.
- Best snow is usually approx.
 250 miles north of center of low.
- Greatest uncertainty with forecast is located near center of low.

When will it begin?

We have lots of tools

- Weather Forecast
- Radar
- Media
- Dew Point ?

Moisture in the atmosphere

- Meteorologists have several parameters we use to note the amount of moisture in the air.
 - Relative humidity
 - Dew point
 - Wet bulb
- In the winter moisture can be hard to come by, so monitoring it is critical.

Dew Point

- The temperature to which air must be cooled for saturation to occur.
- It is reported in degrees F or C.

So if it is 70°F in this room the dew point is some number less than or equal to 70°.

Why is dew point easy to use?

Why is dew point so important?

It gives you an easier way to see how moist is the atmosphere.

In *Winter* it can signal the start of snow

Radar can be misleading

- Radar "sees" moisture, it does not know if it is reaching the ground.
- Forecast models still do a horrible job at timing saturation.

Watch the dew point!

You don't plow the air or 6ft off the ground!

- Using the air temperature to predict if snow will stick is dangerous.
- Thermodynamics tells us the road surface will be different.
- Chemical effectiveness is going to occur at the surface temperature.
- What can we use to detect?

Our eyes

- For most of us they have never let us down
- They tell us what we need to know
- Helps us make all sorts of decisions
- They cannot tell differences in temperature
- They cannot see how slippery is something
- Our eyes are fooled by changes in light, especially at night

We have two choices

- 1. Place a thermometer in the road surface.
- 2. Use an infrared sensor above the surface.

Handheld infrared gun

- Easy to use! Point and shoot!
- Cheap!
- No training necessary!
- Sensor must be acclimated to environment
- Not originally designed for outdoor use
- Typical accuracy comments:
 - ± 4°F from 32°F to 55°F
 - Assumes ambient operations temperature of 73°F to 77°F
 - One model does not work below 32°F

Embedded pavement sensors

- Placed directly in the road to measure pavement temperature.
- Detects road chemicals and freezing point of solution
- System archives data for later analysis.

Mobile weather sensors

- Extremely popular because of cost and ease of use.
- Allows user to see entire road not just one spot.
 - Basic System is air and pavement temperature
 - Advanced System adds dew point, friction, and road condition.
- Not as accurate as fixed.

Non-intrusive sensors

- Non-Intrusive is a very popular method for all road devices.
- In science we call measuring something from a distance remote sensing.
- Benefits of sensors:
 - Lower installation costs/cost to maintain
 - Safer for service and install
 - Accuracy similar to in-road sensors
 - Provides a new value road friction

The Storm is here!

Air Temperature still is important

- Near the low pressure center, or as a front passes temperatures will vary the most.
- Winds play a vital part in temperature changes because "wind moves" colder and warmer air.
- Due to clouds and precipitation the sun is not really much of a factor on air temperature.
- Changes in air temperature will have a slow impact on road temperatures.

Warmest

[Name]

Winds

• Wind during a storm creates two concerns:

- Impacts air temperature changes based on direction
- (Which leads to) changes in pavement temperature, especially in areas exposed to wind.

Misconception of wind chill

- Wind Chill Factor was created by meteorologists to give people an idea of how cold it feels outside.
- The wind chill value itself has no meaning to object such as roads and bridges.
- For example -10°F wind chill will not cool the bridge to -10°F.
- However if the air is getting colder or warmer the pavement will respond.

Pavement temperature

- Chemicals are working or not working based on this temperature!
- Surface is being impacted by:
 - rain or snow on surface (sleet is worse)
 - Plowing exposes surface to air temperature
 - Evaporation is a cooling process
 - Endothermic and exothermic chemicals are causing minor changes
 - If subsurface is 40°F or above heat is coming from below

Measuring surface temperature

- It becomes a little trickier, infrared sensors are now telling you the temperature of the water or ice, which might be different.
- Bridges and elevated surfaces will tend to match the air temperature.

Condition of the Road

- Road condition becomes the key during an event.
- Drivers visually see road conditions and react.
- Vehicle performance is impacted when the grip/friction is reduced on the surface.
- Condition of the road is impacted:
 - Pavement temperature
 - Amount of chemical present vs. amount of ice/water

Measuring road condition

Road condition measuring is not easy. Why?

What is the road condition?

Images :Courtesy of Duane Amsler

[Name]

Eyes again!

- There is too much that is subjective in a observation.
- We are using our eyes again which we know are not good at measuring much of anything.

Lost Trail Pass, Idaho : Guess the driving conditions on the following days?

Did you get them right?

Friction/Grip

- Ultimately isn't that what we are wanting to know? How slippery is the street?
- Measuring friction also removes the subjective issues with people reporting conditions.
- Friction/grip is reported as the coefficient of friction:

The Snow has ended...

Page 41 © Vaisala 10/20/2016

VAIS

Wind and Blowing Snow

- Northwest winds are typical following a winter storm in most of the U.S.
- Increased wind speeds are usually caused by two factors
 - proximity to low pressure (storm)
 - diurnal (daytime) changes in wind
- Drier snowfall that has not a chance to melt and refreeze moves the most.
- Use weather data with wind information to monitor and track.

[Name]

Pavement temperature

- After the precipitation has ended the sky condition, winds and road condition begin to cause larger changes in temperature.
- Cooling will occur (if at night):
 - skies clear
 - winds weakening or blowing in cold air
 - surface has been plowed
- Warming will occur (if during the day):
 - skies clear
 - surface has been plowed
 - surface faces south
- Use pavement temperature tools to monitor

Dew point

- Typically in the U.S. after an event has passed cold, dry air filters in behind the storm.
- A good North, Northwest, or Westerly wind keeps dew points low or even makes them lower.
- Streets dry quicker the drier the air (lower dew point).
- If winds weaken completely, change to a more southerly direction, and there was any melting of snow... it is not all good!

Dew Point and Frost

 At night, as the air cools, heat also leaves the road surface. The road can cool faster than the air and thus fall below the dew point.

Summary

- Understanding the weather is the first thing to overcoming when dealing with weather and winter maintenance.
- Next, make sure you have the correct tools.
- You can see that with each tool, or piece of information, you can react smarter to winter.

