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OBJECTIVES

• Attenuation rates for pile-driving induced vibration
waves

• Effect of site conditions and pile/hammer
characteristics on the attenuation

• Screening tool for soil shakedown potential during
pile-driving
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APPROACH

• Field Testing: Sensor installation and data acquisition

• Data processing and synthesis from all sites

• Development of screening tool for soil shakedown
potential during pile-driving



Sensors & Data Acquisition System

Cone casing and adaptor used 
to push the sensors to depth of 

interest

Cone casing with attached 
geophone 

Cone casings with attached 
accelerometers

Geophone and Triaxial accelerometer 
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Sensors & Data Acquisition System

Data acquisition system used to record 
the signals from sensors

Surface geophone 
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Sites Monitored and Procedure 

Positions for sensor installation

Installation of casing
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Sites Monitored and Procedure 

Pile driving and monitoring 
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Sites Monitored and Procedure 

Data acquisition 



Field Testing Sites
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Site M-25 (Harbor Beach)
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Site M-25 (Harbor Beach)

Plan view of sensor locations

Cross-Section of sensor locations
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Site M-66 (Battle Creek)

Plan view of sensor locations

Cross-Section of sensor locations



Site M-66 (Battle Creek)

Plan view of surface geophone sensor locations
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Site M-66 (Battle Creek)

Welding the second piece after completion of pile driving and 
monitoring again



Site M-139 (Niles)

T.H. #B4

T.H. #B1

Pile H

Site M-139



Site M-139 (Niles)Site M-139



Site US-131
Tested at both abutments



Site Conditions

0 20 40 60 80 100 120
40

35

30

25

20

15

10

5

7

41

100
Hard silty clay

M-25

Loose fine sand

 

 

D
ep

th
 (f

t)

NSPT

 Boring 5
 depth of sensors

Dense silt

Loose fine and 
medium sand

0 20 40 60 80 100 120
55

50

45

40

35

30

25

20

15

10

5
3

9

14

100

M-66
Very loose fine and 
medium sand

 

 

D
ep

th
 (f

t)
NSPT

 Boring 1
 depth of sensors

Sandstone

Medium dense fine
and medium sand



Site Conditions

Loose fine and 
medium sand
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Site M-139 (Niles)Site Conditions: Vs measurements



Field Testing Data
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Record of accelerometers (vertical axis)

Site M-25 (Harbor Beach)



www.ce.memphis.edu

Site M-25 (Harbor Beach)

Max spike for pile tip elevation 23-24 ft



Acceleration Results
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Peak Particle Velocity (PPV) Results
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Peak Particle Velocity (PPV) Results
(Surface geophones)
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D = f(μ, z)
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Site M-139 (Niles)
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Data Processing



Distance 
from pile 

(ft)
ż (in/sec) я

PILE 0.1 23.80 Pile-A2 0.2220569
A2 0.5 9.74 Α2-Α4 0.1322479
A4 2.5 3.34 Α4-SG2 0.1895872

SG2 6.5 0.97 Α2-SG2 0.1704741
PILE 0.1 23.80 Pile-A4 0.1472161
PILE 0.1 23.80 Pile-SG2 0.1736980

Wave Attenuation Coefficients
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Site M-139 (Niles)

A2 = A1 (r1/r2)n exp[-α(r2 – r1)]

ENERGY DISSIPATION

Bornitz Equation:

A1 = amplitude at known distance r1
A2 = amplitude at any distance r2
r1 = distance from source to point of known amplitude
r2 = distance from source to any point
n = coefficient depending on type of wave

n = 1 for body waves in half-space
n = 2 for body waves along surface
n = 0.5 for Rayleigh waves  

α = coefficient of attenuation replaced by: я determined from this study
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Shearing Strain Calculation
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φ≈tan-1[(NSPT/(12.2+20.3σv’/Pa)]0.34

φ => Κ =>σh’ => shear stress, τ

Best estimation based on using 3 layers
with:
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THRESHOLD STRAIN

● SILVER & SEED (1971)  γt ≈ 0.01%

• YOUD (1972)     γt = 0.01 % (limit of his tests)

• DOBRY (1983)   γt = 0.01% (for liquefaction)

• HSU & VUCETIC (2004)  γt < 0.01% (10 cycles)

• MASSARSCH (2008) γt = 0.001 % (many cycles)

• BRANDENBERG ET AL (2009) γt < 0.01%



AFTER BORDEN & SHAO (1995)



Spreadsheet

• Input = Soil Profile, Pile Type and Size, Hammer
• Output = Yes or No to likelihood of shakedown

settlement at selected distances from pile
• Not considered – number of piles or blows
•  Not considered – amount of settlement



Conclusions

• In situ ground vibration measurements during pile driving extended our 
understanding and helped improve and refine the 
hypothetical model of energy transfer from pile to ground

• The Bornitz form of equation was determined to be the best way to most 

accurately represent attenuation. However, the conventional way of 
including material damping through the coefficient 
of attenuation, α, was determined to be too simple 
for driven piles as a source of energy, so a different symbol for 
coefficient of attenuation, я, has been chosen.

• A spreadsheet calculation tool was developed for 
identifying potentially troublesome sites. This tool requires 
input of only a basic soil stratigraphy, blow counts (N) for each strata, pile section 
and pile driver rated energy. Soil and attenuation properties are derived from 
correlations with blow count (N)  
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