Frost Action and Highways

Ralph J. Hodek, P.E.

County Engineers Workshop Manistee, Michigan February 11, 2014

Frost Action

The detrimental effects of seasonal freezing and thawing.

It requires:

- 1) A frost-susceptible soil
- 2) A supply of water
- 3) Below-freezing soil temperature
- 4) A period of above-freezing air temperature

Frost Design Classification

Frost Group		Kind of Soil	Percentage Finer than 0.02 mm by Weight	Typical Soil Types Under Unified Soil Classification System
NFS ¹	(a)	Gravels Crushed Stone Crushed Rock Sands	0-1.5	GW, GP
	(b)		0-3	SW, SP
PFS ²	(a)	Gravel Crushed Stone Crushed Rock	1.5-3	GW-GP
	(b)	Sands	3-10	SW-SP
S1	Gravely Soils		3-6	GW, GP, GW-GM, GP-GM
S 2	Sandy Soils		3-6	SW, SP, SW-SM, SP-SM
F1	Gravely Soils		6-10	GM, GW-GM, GP-GM
F2	(a) (b)	Gravely Soils Sands	10-20 6-15	GM, GW-GM, GP-GM SM, SW-SM, SP-SM
F3	(a) (b) (c)	Gravely Soils Sands, except very fine silty sands Clays, PI > 12	Over 20 Over 15	GM, GC SM, SC CL, CH
F4	(a) (b) (c) (d)	Silts Very fine silty sands Clays, PI < 12 Varved clays and other fine grained, banded sediments	 Over 15 	ML, MH SM CL, CL-ML CL, ML, CL-ML, CL, ML, and SM, CL, CH, and ML, CL, CH, ML, and SM

¹ Nonfrost susceptible.

² Possibly frost susceptible, requires laboratory test to determine frost design soil classification.

Closed and Open System Freezing

after Terzaghi (1952)

Modified Berggren Eq. for Depth of Frost Penetration

$$X = \lambda (48K_f n_f I_{af} / L)^{1/2}$$

- X = frost penetration, ft
- λ = a dimensionless correction factor
- K_f = thermal conductivity of frozen soil, Btu/hr-ft-°F
- L = latent heat of fusion, Btu/ft³ This is the energy involved in the phase change from water to ice.
- n_f = surface freezing index / air freezing index ~ 0.7 for bare roadway, but it depends greatly on the wind speed.
- I_{af} = air freezing index, degree-days F

Idealized Roadway Refreeze Depth During Spring Melt

Freezing Index at Houghton County Airport

Idealized Situation at Bootjack Road

Bootjack Road Reference Points

Measured Frost Heave Along Centerline

Bootjack Road Reference Points

Measured Frost Heave Transverse to Centerline

LUCE COUNTY FROST TUBES

- Information from Stan Ronquist
- Data on 3 tubes from 8/81 to present
- Latest frost in the ground 5/16/96
- Deepest frost penetration 3/3/94 (75")

LUCE COUNTY FROST TUBE Typical thawing pattern

Light Reading for a Cold Winter Night

- Andersland, O. B. and Ladanyi, B., <u>An Introduction to Frozen</u> <u>Ground Engineering</u>, Chapman & Hall, 1994.
- Terzaghi, Karl, "Permafrost", <u>Contributions to Soil Mechanics</u>, <u>1941-1953</u>, Boston Society of Civil Engineers, 1953.
- Departments of the Army and Air Force, <u>TM 5-852-6</u>, "Arctic and Subarctic Construction Calculation Methods for Determination of Depths of Freeze and Thaw in Soils", 1988.
- U.S. Dept. of Transportation, <u>FHWA-HRT-08 057</u>, "Long Term Pavement Performance Computed Parameter: Frost Penetration", 2008.