## **Development of Traffic Live-Load Models for Bridge Rating**

Sasan Siavashi, PhD IMEG Corp

Christopher Eamon, PhD, PE Wayne State University

**2021 Michigan Bridge Conference** March 16, 2021









- AASHTO LRFD and MBE load models were based on vehicles not representative of MI traffic.
- AASHTO LRFD: Load model developed from about 10,000 heavy truck weights recorded in Ontario, Canada in 1975.
- Bridges were rated based on the *Manual for Condition Evaluation of Bridges* based on Load Factor Rating (LFR), which was not reliability-based.
- The *Manual of Bridge Evaluation* was later released in 2008 based on LRFR to develop appropriate load factors which produce a consistent level of reliability.
- These factors were later revised in 2011 (Sivakumar et al. 2011) using weigh-in-motion (WIM) data from truck traffic collected from six states including New York, Mississippi, Indiana, Florida, California, and Texas.





- MDOT: MDOT load models were developed in 1970s.
- Will using current live-load models for bridge rating result in inappropriate levels of safety for MI bridges?
- Propose efficient and reliable approach to develop live-load models for state-specific reliability-based rating of bridges.
- Disclaimer: This research was partially sponsored by MDOT (report SPR-1640). MDOT has not reviewed or been involved with the presented approaches. The views, opinions, and conclusion reflected in this study are the responsibility of authors and do not represent the official policy or position of MDOT.





# WIM Data<br/>AnalysisReliability<br/>AnalysisLoad Models

From the 41 available sites in Michigan, the data from 20 sites were used in this study. The data were collected for approximately three years (from May 2014 to Jan 2017, excluding April and May 2014).



| Site | Location    | ADTT  | Site | Location     | ADTT   |
|------|-------------|-------|------|--------------|--------|
| Hig  | h ADTT (≥ 5 | 000)  | N    | fid ADTT (~2 | 500)   |
| 9209 | I-275       | 4850  | 5059 | I-196        | 2520   |
| 7029 | I-94        | 4930  | 6369 | I-69         | 2650   |
| 8869 | I-69        | 4980  | 6469 | I-94         | 2640   |
| 9189 | I-275       | 5120  | L    | ow ADTT (~1  | 000)   |
| 7269 | I-69        | 5290  | 4049 | I-75         | 850    |
| 8839 | I-94        | 6340  | 5289 | US-31        | 1050   |
| 7169 | I-94        | 6480  | 6429 | I-75         | 1340   |
| 7219 | I-94        | 8440  | 5099 | I-96         | 1350   |
| 7159 | I-94        | 9900  | 8029 | US-127       | 1560   |
| 9699 | I-75        | 11100 | Ver  | y Low ADTT ( | (~400) |
|      |             |       | 1199 | M-95 (UP)    | 400    |
|      |             |       | 2029 | US-2 (UP)    | 420    |









WIM Sites With ADTT  $\geq$ 5000.











WIM Sites With ADTT ~400





Data filtering criteria must be employed to eliminate lightweight or unrealistic vehicles from the database.

| Criteria Type        | Criteria for Elimination                                                                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------|
| Vehicle Class        | Class 1-3 (automatic elimination)                                                                           |
| Gross Vehicle Weight | GVW < 12 kips (No upper limit)<br>GVW differs from axle weight sum by more than 10%.                        |
| Axle Weight          | First axle > 25 kips or < 6 kips.<br>Any axle > 40 kips or < 2 kips.                                        |
| Vehicle Length       | Length < 5 ft.<br>Length > 200 ft.                                                                          |
| Axle Spacing         | First axle spacing < 5 ft.<br>Any axle spacing < 3 ft.                                                      |
| Speed                | Speed < 20 or > 100 MPH for GVW vehicles < 200 kips.<br>Speed < 20 or > 85 MPH for GVW vehicles > 200 kips. |
| Number of Axles      | Number of axles $< 2$ or $> 13$ .                                                                           |





- Out of the ~159 million total vehicles represented by 41 high-speed WIM sites, the 20 sites selected contained ~101 million vehicles (63.6% of the total available).
- Overall, ~ 12 million (11.7%) of the results from the 20 selected sites were removed due to data filtering resulting in ~ 90 million vehicles remained.
- The data is further filtered to only capture Michigan Legal and Extended Permit (MI-LEP) vehicles for Legal Load rating.

| Vehicle Type                      | MI-LEP Criteria                                                                                                                                                |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legal,<br>GVW > 80 kips           | For axles spaced $\ge 9$ ft, axles $\le 18$ kips<br>For axles spaced from $3.5 - 9$ ft, axles $\le 13$ kips<br>For axles spaced $< 3.5$ ft, axles $\le 9$ kips |
| Legal,<br>GVW < 80 kips           | Any individual axle $\leq 20$ kips<br>Sum of tandem axles $\leq 34$ kips                                                                                       |
| Extended Permit<br>(Construction) | Length $\leq 85$ ft<br>Any axle $\leq 24$ kips<br>GVW $\leq 150$ kips                                                                                          |







From (~ 90 million vehicle records, ~ 89 millions (99.3%) fall into legal and extended permit category.



- Vehicle load effects were calculated for span length of 20-200 ft. in increments of 20 ft..
- Considered effects were maximum simple span moments and shear.
- Both one-lane (single vehicle and following vehicles) and two-lane (side-by-side) load effects were considered.

One-Lane

Two-Lane



Single



Following



Side-by-Side







Maximum Single, Following, and Side-by-side Simple Span Moments.







■ Max. Single ■ Max. MDOT Trucks ■ Max Single+Following ■ Max. Two-Lane

Maximum Single, Following, and Side-by-side Simple Span Shears.





#### **Determine Bridge Types to Consider for Analysis :**

- 1. Girder Type:
  - a. Prestressed concrete I-girders (PC).
  - b. Steel girders (CS).
  - c. Reinforced concrete girders (RC).
  - d. Prestressed concrete box beams, spaced (BS).
  - e. Prestressed concrete box beams, side-by-side (BT).
- 2. Span Type and Load Effects (both single lane and two lane):
  - a. Simple Span, Moment.b. Simple Span, Shear
- 3. Span Lengths:
  - 20-200 ft at increments of 20 ft.
- <u>4. Girder Spacing</u> (as applicable):
  - a. 4-12 ft. at increments of 2 ft.
  - b. For side-by-side box beams, two widths (36", 48") are used.





In total 195 bridge cases 780 combinations



- Live Load statistics: Rating 5 years.
- Regression analysis to best-fit upper tail of load effects.
- Extreme Type I probability theory to estimate statistical parameters (mean and COV).

 $\overline{L}_{\text{max}}$  = Mean maximum of load effect for the projected return period.

 $\sigma_{L_{\text{max}}}$  = Standard deviation of load effect for the projected return period.

where

 $\overline{L}_{\max} = \mu_N + \frac{0.5772157}{\alpha_N}$ 

 $\sigma_{L\max} = \frac{\pi}{\sqrt{6}\alpha_N}$ 

$$\mu_N = \overline{x} + \sigma \left( \sqrt{2\ln(N)} - \frac{\ln(\ln(N)) + \ln(4\pi)}{2\sqrt{2\ln(N)}} \right)$$

$$\alpha_{N} = \frac{\sqrt{2\ln(N)}}{\sigma}$$







| Background | WIM Data<br>Analysis | Reliability<br>Analysis | Load Models |
|------------|----------------------|-------------------------|-------------|
|            |                      |                         |             |

- Live Load Uncertainties:
  - a) Data projection ( $V_{proj}$ ).
  - b) Site-to-site variation  $(V_{site})$ .

c) Uncertainty in  $\overline{L}_{max}$  based on the WIM data at a particular site (V<sub>data</sub>).

- d) Impact factor ( $V_{IM}$ ). (based on available field tests)
- e) Distribution of load to the girder ( $V_{DF}$ ). (based on available field tests)

$$V_{\max L} = \sqrt{V_{projection}^{2} + V_{site}^{2} + V_{data}^{2} + V_{IM}^{2} + V_{DF}^{2}}$$





| Dealtanound | WIM Data | Reliability | Load Modela |
|-------------|----------|-------------|-------------|
| Dackground  | Analysis | Analysis    | Load Wodels |

The general limit state function for a bridge girder in this study is:

g = R - (Dp+Ds+DW) - LL

where

R: Girder resistance Dp : Dead load due to prefabricated components Ds : Dead load due to site-cast components Dw : Dead load due to wearing surface LL: Vehicular live load

RVs from Nowak (1999) to be consistent with the AASHTO LRFD and MBE calibrations.

Also, girder resistance is taken as a lognormal random variable while the sum of load effects is assumed normal.

| Random Variable                                 | <b>Bias Factor</b> | COV         |
|-------------------------------------------------|--------------------|-------------|
| Resistance RVs (R)                              | λ                  |             |
| Prestressed Concrete, Moment                    | 1.05               | 0.075       |
| Prestressed Concrete, Shear                     | 1.15               | 0.14        |
| <b>Reinforced Concrete, Moment</b>              | 1.14               | 0.13        |
| <b>Reinforced Concrete, Shear</b>               | 1.20               | 0.155       |
| Steel, Moment                                   | 1.12               | 0.10        |
| Steel, Shear                                    | 1.14               | 0.105       |
| Load RVs                                        |                    |             |
| Vehicle Live Load (LL), Moment                  | 1.07-2.08          | 0.16-0.27   |
| Vehicle Live Load (LL), Shear                   | 1.0-1.64           | 0.16-0.30   |
| Live Load Impact Factor (IM)                    | 1.13, 1.10         | 0.09, 0.055 |
| Vehicle Load Distribution Factor<br>(DF)        | 0.72-0.99          | 0.11-0.18   |
| Dead Load, Prefabricated (D <sub>p</sub> )      | 1.03               | 0.08        |
| Dead Load, Site-Cast (D <sub>s</sub> )          | 1.05               | 0.10        |
| Dead Load, Wearing Surface<br>(D <sub>w</sub> ) | mean 89 mm         | 0.25        |







Determine needed design and rating load models to meet required safety levels

- For rating:  $\beta \min = 1.5$ ,  $\beta \min \text{ ave} = 2.5$ 

 $\beta = 1.50 \longrightarrow P_f \approx 1.15 \qquad \beta = 2.50 \longrightarrow P_f \approx 1.160$ 

These reliability targets are notional values and corresponding failure probabilities should not be taken literally.

$$RF = \frac{\varphi R_n - 1.25DC - 1.5DW}{\gamma_{LL}(LL + IM)} \longrightarrow RF = \frac{R_n - 1.25DC - 1.5DW}{(RLE)(DF)}$$
$$RF = \frac{R_n - 1.25DC - 1.5DW}{(RLE)(DF)} \xrightarrow{RF = 1} R_n = (1/\phi)(1.25DC + 1.5DW + \gamma_{LL}(LL + IM))$$

• Knowing the minimum (1.50) and average (2.50) target reliability index, minimum value of  $\gamma_{LL}$ (LL+IM) or Required Load Effect (RLE) can be determined.





| Background | WIM Data<br>Analysis | Reliability<br>Analysis | Load Models |
|------------|----------------------|-------------------------|-------------|
|------------|----------------------|-------------------------|-------------|

- The possibilities to develop live-load models:
- 1- For each bridge type, apply the appropriate load factor such that the minimum reliability index is met. In this study, for 195 bridges, 195 load factors is required!
  - Drawbacks:

Accurate but not practical!





| Background | WIM Data<br>Analysis | Reliability<br>Analysis | Load Models |
|------------|----------------------|-------------------------|-------------|
|------------|----------------------|-------------------------|-------------|

- 2- Use the current load models (i.e. AASHTO and MDOT rating trucks) and increase/modify the load factor such that the minimum reliability index (level of safety) is met for all considered bridge types.
  - Drawbacks:

May result in large inconsistencies in level of reliability, where many of the structures are greatly under-rated, producing overly conservative results and leads to unnecessarily traffic restriction (posting).

The degree of conservatism in rating costs much more money comparing to the design.





| Background | WIM Data<br>Analysis | Reliability<br>Analysis | Load Models |
|------------|----------------------|-------------------------|-------------|
|------------|----------------------|-------------------------|-------------|

- **3-** Determine a new, better set of rating trucks. A Reliability based design optimization can be used such that the best option(s) for the axle weight and spacing can be determined.
  - Drawbacks:
  - 1- May result in an unrealistic vehicle configuration.
  - 2- Complexity and computational cost.
  - 3- convergence to a local rather than global optimum.





- 4- Using a reliability-based design optimization (RBDO) to develop an expression for the load model.
  - Drawbacks:

Accurate but not practical (no actual rating vehicle)! Potentially high computational cost.

- A function is needed to directly describe the required load effect (RLE) caused by a rating vehicle.
- Various curves including logarithmic, power, compound, logistic, growth, polynomial, and sum of sines functions were considered.

$$RLE = \sum_{i=1}^{n} a_i \sin(b_i x + c_i)$$

• Constants  $a_i$ ,  $b_i$ , and  $c_i$  represent design variables to be determined in the optimization and x is bridge span length.





- A genetic algorithm (GA) is used for the solver.
- Objective function: minimize variability in structural reliability among the different bridge girders considered for rating.
- Constraint: The reliability index constraint for girder  $i(\beta_i)$  is greater than the minimum acceptable reliability index  $(\beta_{min})$ .

 $\min f(X, Y)$ s. t.  $\beta_i \ge \beta_{min}$  (here is 2.5);  $i = 1, N_p$  $Y_k^l \le Y_k \le Y_k^u$ ; k = 1, NDV









**MI-LEP** Shear

| Load Effect          |                       | Parameter             |                       |                |                       |                       |                |                       |                       |
|----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|
|                      | <b>a</b> <sub>1</sub> | <b>b</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | a <sub>2</sub> | <b>b</b> <sub>2</sub> | <b>c</b> <sub>2</sub> | a <sub>3</sub> | <b>b</b> <sub>3</sub> | <b>c</b> <sub>3</sub> |
| <b>MI-LEP Moment</b> | 8556                  | 0.015                 | -0.621                | 4879           | 0.022                 | 2.07                  | 295            | 0.053                 | 1.91                  |
| <b>MI-LEP Shear</b>  | 244                   | 0.002                 | .021                  | 113            | 0.002                 | 6.30                  | 4.59           | 0.062                 | -1.67                 |





| Background | WIM Data<br>Analysis | Reliability<br>Analysis | Load Models |
|------------|----------------------|-------------------------|-------------|
|------------|----------------------|-------------------------|-------------|

- 5- "Modified Best Selection" approach
- The goal is to choose the best truck with the appropriate load factor from the WIM-data such that the minimum reliability index can meet while the variation from the target reliability index is minimized.
- The proposed model was found not only to be more simple but to have a substantial computational advantage over RBDO for load model development





Step by Step Procedure of Modified Best Selection Approach:

#### Step 1:

- Calculate the minimum load factor required for all span lengths and bridge types.
- The load factor is determined such that the value of VLE×LF/RLE across all bridge types and span lengths is not less than one (minimum acceptable level of safety is met for all bridge cases).







#### Step 2:

- Select a set of initial trucks for further consideration (i.e. remove the vehicles that do not have the potential to be selected as an optimal selection).
- WIM data contains 89 million MI-LEP. Full consideration for all vehicles is costly.
- In this step, only the vehicles that produce a range of provided to required load effect ratios within a specified limit are taken for further consideration. This selection limit can be expressed as:

$$\left(\frac{VLE \times LF}{RLE}\right)_{max} < 1 + k$$

k is the fractional range limit imposed.

The higher k value increase the level of conservatism.

Here, the k is limited to 20%

►IMEG





| Background | WIM Data<br>Analysis | Reliability<br>Analysis | Load Models |
|------------|----------------------|-------------------------|-------------|
|------------|----------------------|-------------------------|-------------|

- In the steps 1 and 2,  $\left(\frac{VLE \times LF}{RLE}\right)$  ratio shifts above one and the maximum  $\left(\frac{VLE \times LF}{RLE}\right)$  ratio is limited to 1.20.
- It may appear intuitive to do so, choosing the lowest  $\left(\frac{VLE \times LF}{RLE}\right)_{max}$  does not simply select the best vehicle across all span lengths.
- Here both trucks have the same  $\left(\frac{VLE \times LF}{RLE}\right)_{max}$  of 1.29 but truck 1 is a better option.





| BackgroundWIM Data<br>AnalysisReliability<br>Analysis | Load Models |
|-------------------------------------------------------|-------------|
|-------------------------------------------------------|-------------|

#### Step 3:

• In this study, the Demerit Points Classification suggested by Collins (2001) is modified and used for selecting the best truck(s).

| <b>Experimental over</b><br><b>prediction ratio,</b> $\lambda$ | Classification          | Penalty<br>(PEN) | $\lambda = \frac{VLE * LF}{RLE}$                              | Classification         | Penalty<br>(PEN) |
|----------------------------------------------------------------|-------------------------|------------------|---------------------------------------------------------------|------------------------|------------------|
| < 0.50                                                         | Extremely dangerous     | 10               | $\begin{array}{l} 1.00 \leq \lambda \\ \leq 1.03 \end{array}$ | Best                   | 0                |
| 0.50 - 0.65<br>0.65 - 0.85                                     | Dangerous<br>Low safety | 5<br>2           | $1.03 < \lambda$<br>$\leq 1.05$                               | Ideal                  | 1                |
| 0.85 - 1.30                                                    | Appropriate safety      | 0                | $1.05 < \lambda < 1.10$                                       | Very good              | 2                |
| > 2.00                                                         | Extremely               | 2                | $1.10 < \lambda$<br>$\leq 1.15$                               | good                   | 5                |
| Demerit Points Cla                                             | assification (Collins   | s 2001)          | $1.15 < \lambda \le 1.20$                                     | Conservative           | 10               |
|                                                                |                         |                  | $1.20 < \lambda$                                              | Extremely conservative | 20               |

Modified Demerit Points Classification (this study)





| Background | WIM Data<br>Analysis | Reliability<br>Analysis | Load Models |
|------------|----------------------|-------------------------|-------------|
|------------|----------------------|-------------------------|-------------|

- In step 3, depending on the  $\left(\frac{VLE \times LF}{RLE}\right)$  ratio for each span, a penalty point is assigned. The total penalty points for each vehicle are summed.
- The vehicle with the lowest penalty points can be selected as the best choice.
- vehicle live load factor  $\gamma_{LL} = \max(VLE_f / (VLE + IM))$
- However, depending on the size of database, it is possible that multiple vehicles with the same penalty points can be determined.
- If multiple vehicles with the same penalty points are determined, as the final step, the vehicle with the minimum average  $\left(\frac{VLE \times LF}{RLE}\right)$  across all bridge span lengths can be selected.







Modified Best Selection Approach Trucks (kips, ft.).

| Database             |      | RBDO | Mod. Best Selection | AASHTO | MDOT |
|----------------------|------|------|---------------------|--------|------|
| <b>MI-LEP</b> Moment | PEN  | 1    | 0                   | 21     | 180  |
|                      | Mean | 1.01 | 1.01                | 1.06   | 1.55 |
| <b>MI-LEP Shear</b>  | PEN  | 0    | 0                   | 127    | 155  |
|                      | Mean | 1.00 | 1.01                | 1.19   | 1.32 |

Comparison of Total Penalty Points and average VLE  $\times$  LF/RLE















- More complicated rating models are not necessarily most effective. Using Modified Best Selection approach, a single rating vehicle for moment effects and another vehicle for shear effects produced significantly more consistent results overall when compared to the multiple-vehicle AASHTO and MDOT alternative models.
- Modified Best Selection approach can be used to develop 1, 2, and 3-unit vehicles to meet bridge posting criteria.

• Modified Best Selection approach can be used to develop live load models for design.





### **References**

- Siavashi, S., & Eamon, C. D. (2020). "Load Truncation Approach for Development of Live-Load Factors for Bridge Rating." Journal of Bridge Engineering, 25(7), 04020039.
- Siavashi, S., & Eamon, C. D. (2019). "Development of traffic live-load models for bridge superstructure rating with RBDO and best selection approach." Journal of Bridge Engineering, 24(8), 04019084.
- Siavashi,S.2019."Optimal assessment of weigh-in-motion data for structural reliability based rating of bridge superstructures." Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Wayne State Univ.
- Eamon, C. D., & Siavashi, S. (2018). Developing representative Michigan truck configurations for bridge load rating (No. SPR-1640). Michigan. Dept. of Transportation. Research Administration.
- AASHTO (2011) "Manual for bridge evaluation", 3rd Ed., Washington, DC: AASHTO.
- Sivakumar, B., Ghosn, M., & Moses, F. (2011). Protocols for collecting and using traffic data in bridge design (Vol. 683). Transportation Research Board.
- Curtis, R. and Till, R. (2008) "Recommendations for Michigan Specific Load and Resistance Factor Design Loads and Load and Resistance Factor Rating Procedures." MOOT Research Report R-1511.
- Collins, M. P. "Evaluation of shear design procedures for concrete structures." (2001) Rep. Prepared for the CSA Technical Committee on Reinforced Concrete Design, Canada.
- Nowak, A. S. (1999). "Calibration of LRFD bridge design code", NCHRP Report 368. Transportation Research Board, Washington, DC, 208.





