Road Recycling & Improvement Program

SUMMARY & FIRST YEAR REVIEW

Christopher J. Bolt, MPA, PE Managing Director Angela N. Kline, PE Director of Engineering & Deputy Managing Director

County Engineers' Workshop

February 6, 2019

Welcome to our story...

SUCCESS IS AN ICEBERG

What people see: **SUCCESS**

What really happens FAILURE SETBACKS NAYSAYERS DOUBTS HARD WORK MORE HARD WORK MORE FAILURES SACRIFICES RISKS LATE NIGHTS EARLY MORNINGS COURAGE PERSISTENCE ACTION

Overview

What is Our "Why?

□What is Recycling, and How Are We Doing It?

□Things to Know

□ The Case for Recycling

Overview

What is Our "Why?

□ What is Recycling, and How Are We Doing It?

Things to Know

□ The Case for Recycling

Why? How ? What?

Why = The Purpose

What is your cause? What do you believe?

How = The Process

Specific actions taken to realize the Why.

What = The Result

What do you do? The result of Why. Proof.

What if...

this was our average road?

2017 PASER Ratings: Primary Roads

PASER 10, 9, 8 <u>Routine:</u> Crack Fill Minor Patching 35% 190 miles

FAIR

PASER 7, 6, 5 <u>Preventive:</u> Chip Seal HMA Wedging Concrete Joint Repair POOR

PASER 4, 3, 2, 1 <u>Rehab/Reconstruct:</u> Resurface Pulverize/HMA Paving Replace Concrete Slab Reconstruct

PASER – Pavement Surface Evaluation & Rating System

2017 PASER Ratings: Local Roads

PASER 10, 9, 8 <u>Routine:</u> Crack Fill Minor Patching 80 miles

FAIR

PASER 7, 6, 5 <u>Preventive:</u> Chip Seal HMA Wedging Concrete Joint Repair POOR

PASER 4, 3, 2, 1 <u>Rehab/Reconstruct:</u> Resurface Pulverize/HMA Paving Replace Concrete Slab Reconstruct

PASER – Pavement Surface Evaluation & Rating System

Our Mountain to Climb

1,500+ Mile Road System

- 550 Primary
- 900+ Locals (80% Paved)

Reconstruction required on:

- 50% of Primaries (220 miles)
- 85% of Locals (680 miles)

\$63 Million+ in township road work currently programmed

- 3-Year "Extreme Makeover"
- ~30% of Local Roads

Red = PASER < 4

Yellow = PASER = 5

Green = PASER > 6

Our Why...our "BHAG"

Build GREAT roads!

- Roads that are built:
- **Strong** from the bottom up.
- Durable in all seasons.
- At the **same cost** or *less*.

 While being GREEN – Reducing, Reusing, Recycling, and minimizing environmental impacts.

BHAG: Big, Hairy, Audacious Goal, "Built to Last: Successful Habits of Visionary Companies" by James Collins and Jerry Porras

What is Recycling, and How Are We Doing It?

□Things to Know

□ The Case for Recycling

It's Basically Like Rototilling Your Garden...

With LOTS of Power!

Versatility: Milling and Recycling

Recycling 101

Milling - upcutting

Recycling 101

Recycling - downcutting

Recycling 101 – The Train

Two Methods: Emulsion vs. Foamed Asphalt (PG)

Non continuously bound layer resists reflective cracking

Asphalt Paving Systems (Florida) Using Emulsion

JCDOT's Crew: Time-lapse of the Process (Foamed Asphalt, PG58-28)

Overview

What is Our "Why?

What is Recycling, and How Are We Doing It?

Things to Know

□The Case for Recycling

Misinformation abounds!

The technology is here and ready...

30+ years of research & development...a lot has been learned

Proven technology

Preferred fix – especially in cold climates

Durable base – perpetual?

Diverse applications

Crack performance is outstanding... Iowa Field Performance

Average High Severity Transverse Cracking 10 Year Span (3-4 inches HMA Surface)

Economics...

Multiple pieces of equipment required to have a comprehensive, effective, and high quality program

\$5-6M financed by an equipment bond issue

Relatively quick Return on Investment (ROI)

Economics...

The comprehensive program includes the following major pieces:

 Cold-in-Place Recycler/Mill (full lane width 3800CR) Preparatory Mill (W150 2-5 ft. variable width drum) 	\$1,488,000 \$ 665,000
 Paver – Heavy-duty screed 	\$ 540,000
 Roller – Steel Drum Vibratory 	\$ 148,000
<u>Roller – 18-ton Pneumatic</u>	<u>\$ 128,000</u>
	\$2,969,000
 Mobile Cold Recycling Plant (KMA220i) 	\$ 933,500
 Ground Penetrating Radar/LIDAR Vehicle 	\$ 225,000
 Additional supporting equipment 	\$2,000,000

• Water Truck, 2 flatbed haulers, 2 50-ton haulers, semi tractors, cement spreader, lab equipment, etc.

Variable-width Mill (W150)

Mobile Cold Recycling Plant (KMA220i)

Ground Penetrating Radar (GPR)

Ground Penetrating Radar (GPR)

Engineering Lab Enhancements

Extensive training with experts in the field of foamed asphalt mix design

Some of our problems and issues...

Cutting an 8-inch depth and getting a smooth base surface during the paving	Handling material shortages and overages at the hopper	Rental of a truck for cement blowing	
and rolling phase Determining the best rolling pattern	Keeping the train moving	Finding buried metal structures ahead of machine	
Training the operators	Haul time for hot asphalt oil from Bay City	Learning mix designs and getting our lab up and running fully	
Not having all the new equipment for the first season	Returning liquid AC if not used	Construction logistics and project management	
Water truck issues and keeping up with water	Ending the tanker in uphill stretches	Getting contractors to pave in a timely fashion	
Portland cement spreader issues (on the rental)	Learning the equipment and wear parts (e.g., a belt adjustment problem shut us down for a week - simple issue but we didn't know)	Utilities that were mismarked and/or too shallow	
Skid steer loader availability	Keeping the crew informed and having good communication	Preparing and finishing of project sites	
Only being able to trench one side at a time so water and excess material trucks can maneuver in the other lane	Proper training for hose connections with hot AC liquid (protocols and	Availability of hot AC oil from suppliers on a consistent schedule More	
Compacting trench floor properly for	safety valves are in place, but fear still exists)		
widening	Fuel deliveries		

Overview

What is Our "Why?

What is Recycling, and How Are We Doing It?

The Case for Recycling

Road Design 101: Crush, Shape, & Compact (8"+3.5")

IMPORTANT: Assumes dry conditions with no cracks in the pavement

Base is wet and soft every freeze/thaw cycle; cracks form too soon

Revisiting Our Why...

Traditional CSC builds good roads...

Roads are currently built:

- Strong best when new, from the top down (SN ~2.55).
 - Cracks and moisture compromise the intended structural number
 - 40% or less of the strength is from the base
- **Durable** climate change is accelerating deterioration.
 - Strength is lost as it ages and during wet/freeze-thaw cycles
- Cost –\$300,000 to \$400,000 per mile; approaching \$500,000 per mile for thicker pavement to add strength (SN ~3.4).
 - Heavily dependent on HMA prices (certainly not going down)
- **GREEN** reuses the existing road material, but requires much more new HMA to achieve strength. More aggregate, fuel, trucking, and resources.

Road Design 101: Cold-in-Place Recycled/FDR (8"+3.5")

Calculate the Structural Number

- Hot-Mix Asphalt (HMA):
- Bound Aggregate Base (BAB):
- Aggregate Base:

For a CIR/FDR with 8" of BAB and 3.5" of HMA:

 $(8" BAB) \times (0.35) + (3.5" HMA) \times (0.43) = ?$

2.80 + 1.51 = **4.31**+

IMPORTANT: Retains strength in wet conditions, and less likely to crack

Road Design 101: Cold-in-Place Recycled/FDR (7"+2")

Calculate the Structural Number

- Hot-Mix Asphalt (HMA):
- Bound Aggregate Base (BAB):
- Aggregate Base:

For a CIR/FDR with 7" of BAB and 2" of HMA:

 $(7" BAB) \times (0.35) + (2.0" HMA) \times (0.43) = ?$

2.45 + 0.86 = **3.31**+

IMPORTANT: Retains strength in wet conditions, and less likely to crack

Road Design 101: Cold-in-Place Recycled/FDR (6.5"+2")

Calculate the Structural Number

- Hot-Mix Asphalt (HMA):
- Bound Aggregate Base (BAB):
- Aggregate Base:

For a CIR/FDR with 6.5" of BAB and 2" of HMA:

 $(6.5" \text{ BAB}) \times (0.35) + (2.0" \text{ HMA}) \times (0.43) = ?$

2.28 + 0.86 = **3.14**+

IMPORTANT: Retains strength in wet conditions, and less likely to crack

Building our roads to last...starting today!

LEGO block philosophy, building from the ground up, mile by mile

This sample is something typically seen from a state highway...but, it's a **local** road!

How can we have a base like this on **our** roads?

Our "Why"...more details

Build GREAT roads!

Roads that are built with a Structural Number of **between 3.0 and 4+:**

- **Strong** from the bottom up.
 - 65-75% of the strength from the base
- **Durable** in all seasons.
 - 70-80% Indirect Tensile Strength (ITS) retained while wet
 - Cracking is significantly reduced
- At the **same cost** or *less*.
 - Generally 30%+ savings, especially for an equivalent strength
- d 4+:
- While being GREEN Reducing, Reusing, Recycling, and minimizing environmental impacts.
 - 70% reduction in greenhouse gas emissions
 - Less use of virgin aggregates for HMA

The Long View...

•This is a long-term, sustainable road improvement plan

- 50 to 80 miles per year over the next 20-30 years (1,600 miles)
- Rural townships benefit in the long run (e.g., the "Alaska method")
- •Maintenance costs will likely decline over time
 - Potholes will become more and more rare
- •Employee morale and engagement benefits will continue to grow
 - Important for retention and recruitment
- •Our focus can shift towards other priorities in our community:

Making the Jackson County community safe, and helping it to thrive as a great place to work, live, and play!

Road Recycling & Improvement Plan

2018 Project List

Name	P.O.B	P.O.E	Length	Funding Source	Notes
Rosehill Rd	Cooper Rd	N. Elm Ave		JCDOT	Class A
Maple Dale Rd	Kimmel Rd	Vrooman Rd	2	Summit	Bond Program
Thorne Rd	Kimmel Rd	Sears Rd	0.5	Summit	Bond Program
Riegel Rd	King Rd	McCain Rd	1.01	Spring Arbor	Bond Program
S. Harrington Rd	McCain Rd	N. Spring Arbor Twp Line	1.19	Spring Arbor	Bond Program
Kimmel Rd	Thorne Rd	S. Jackson Rd	2.71	Summit	Bond Program
Reynolds Rd	Horton Rd	Kibby Rd	2.09	Spring Arbor	Bond Program
Mathews Rd	Hammond Rd	M-60	0.71	Spring Arbor	Bond Program
		Total	11.26		
		2019 P	roject Li	st	
Mathews Rd	Hammond Rd	Teft Rd	1.11	Spring Arbor	Existing Dirt Road/Bond Program
Cox Rd	Mathews Rd	Teft Rd	0.51	Spring Arbor	Existing Dirt Road/Bond Program
Teft Rd	Mathews Rd	M-60	2.28	Spring Arbor	Bond Program
Vrooman Rd	Moscow Rd	Horton Rd	2.01	Summit/Spring Arbor	Bond Program
Whispering Wood Sub	Off Kibby Rd	Road End		Summit	Bond Program
Rimers Dr	Off Reynolds Rd	Road End	0.4	Spring Arbor	Bond Program
Meadowbrook Ln	Springbrooke Rd	Road End	0.21	Summit	Bond Program
Pioneer Dr	Off McCain	Arbor Hills Rd	0.95	Summit	Bond Program
Arbor Hills Rd	Off McCain	Pioneer	0.47	Summit/Spring Arbor	Bond Program
Remington	Off Dearing Rd	Road End	0.22	Spring Arbor	Bond Program
Fairground					
Bailey Rd	County Farm Rd	Springport Rd	1.61	Sandstone	Township program
Falahee Rd	Flansburg Rd	Page Ave	1.39	JCDOT	Class A
Holibaugh Rd	Village of Springport	County line	2.59	JCDOT	
Voy St	Glasgow Rd	Oakview Trl	0.09	Assessment	Private Dr in Sandstone Twp
Oakview Trl	Voy St	Woodlane Trl	0.36	Assesment	Private Dr in Sandstone Twp
Woodlane Trl	Oakview Trl	Leora Ln	0.12	Assesment	Private Dr in Sandstone Twp
Sandstone Creek Dr	N. Sandstone Rd	Road End	0.29	Assesment	Private Dr in Sandstone Twp
Old Silo Dr	Hankerd Rd	Road End	0.52	Assesment	Private Dr in Henrietta Twp
	7	Total	15.82		

What is Recycling, and How Are We Doing It?

Rosehill Road

2019 Asphalt Recycling and Reclaiming Association/*Roads & Bridges* Recycling Award Featured in the February 2019 Issue of *Roads & Bridges*

Thank You to Many Partners!

JCDOT wholeheartedly acknowledges and thanks the following partners for their support and contributions towards a successful first year of road recycling:

- The entire JCDOT Team and Crews
- The Jackson County Board of Commissioners
- County Administrator/Controller, Mike Overton, MPA
- Mike Marshall, Jeff Johnson, Loyd Amos, and the entire team at Wirtgen America, Inc.
- Jeff Ely, Pat Kane, and the entire team at AIS Construction Equipment
- EJD Transport, Inc.
- St. Marys Cement
- Bit-Mat Products of Michigan, Inc.

Research & Innovation Continues...

Appendix

Imagine... A 5-6 year-old road that looks like this...

...not one crack or defect. Anywhere.

Highway 23 in Ontario, Canada

Imagine...

A 20 year-old road that looks like this...in Minnesota. How can this be?

Comparison of Two Road Segments Constructed in 1999

Detroit Lakes, Minnesota Photos from 2012

4" COLD-IN-PLACE RECYCLING WITH 3" HMA

TRADITIONAL 3" MILL AND OVERLAY WITH 3.5" HMA

Minnesota Control Section US-59 in 2012 – 2-inch mill and 3.5-inch HMA overlay constructed in 1999

What we see today...

This road is not even 20 years old.

