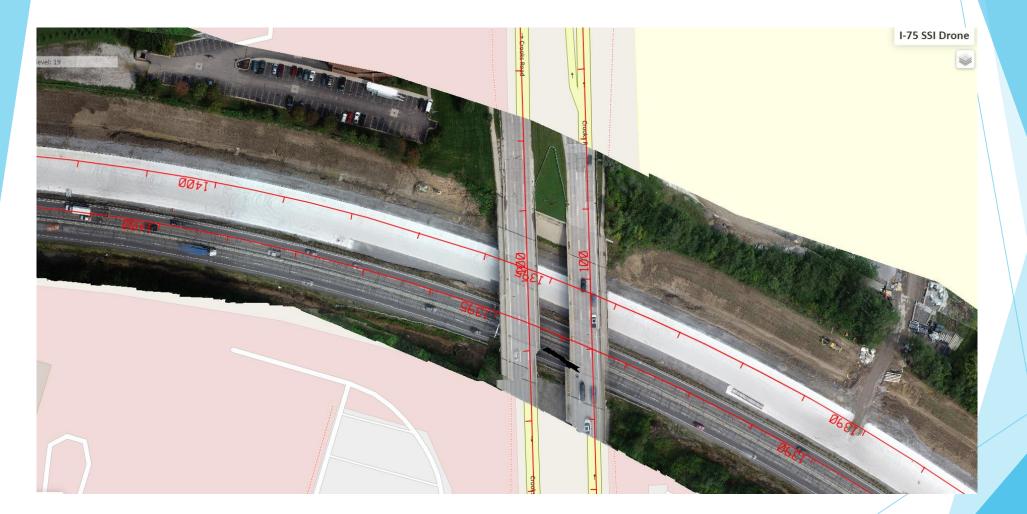


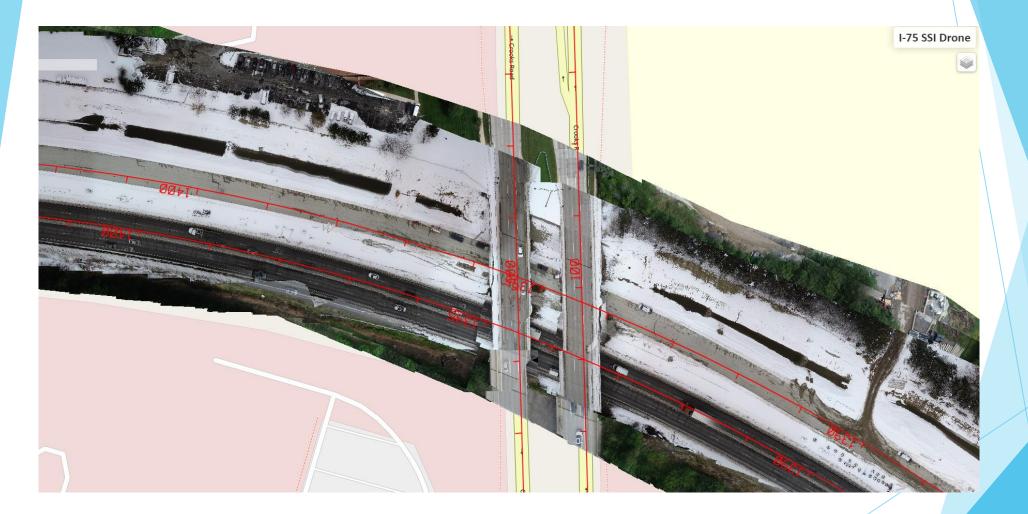
Innovative Surveying Tools for Construction

Tony Thelen - SSI

The Tool Chest

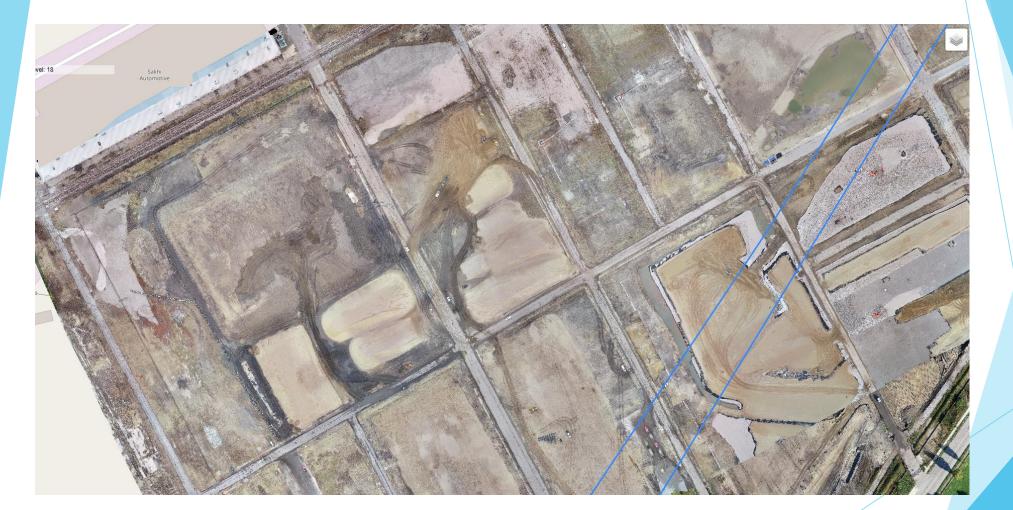
UAV Collection


"The Simple Power of a PICTURE"


May 24th

July 20th

September 14th

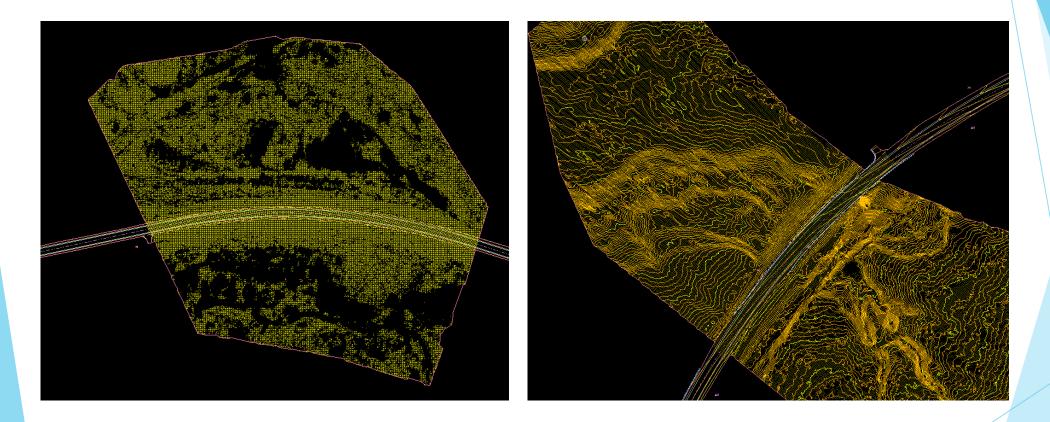


November 13th

October 10th

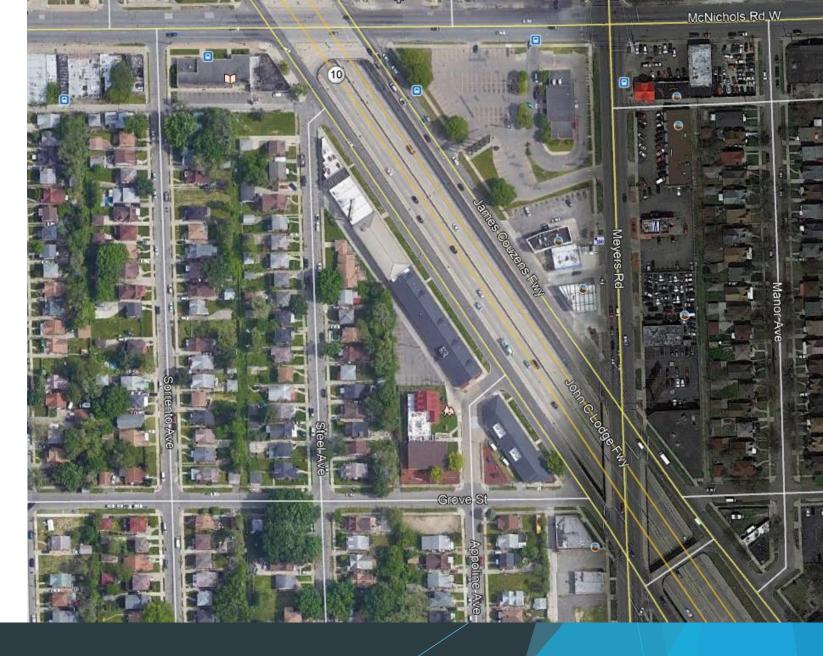
January 16th

Virtual "Bucket Truck" Surveys



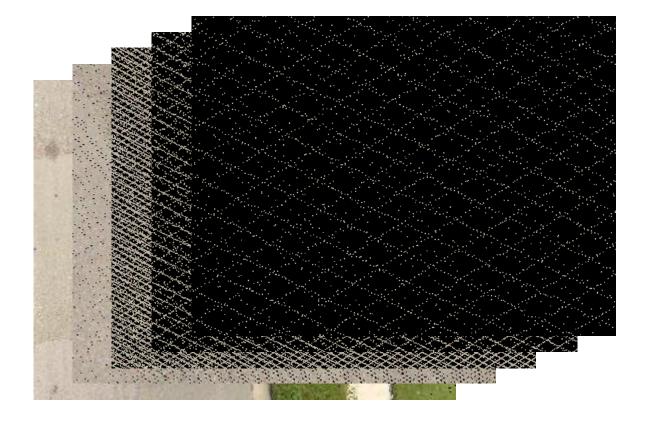
Slope Failures and Tough Conditions

UBURGEL


Vegetation Penetration and LiDAR Detail

M-10 Wall Monitoring

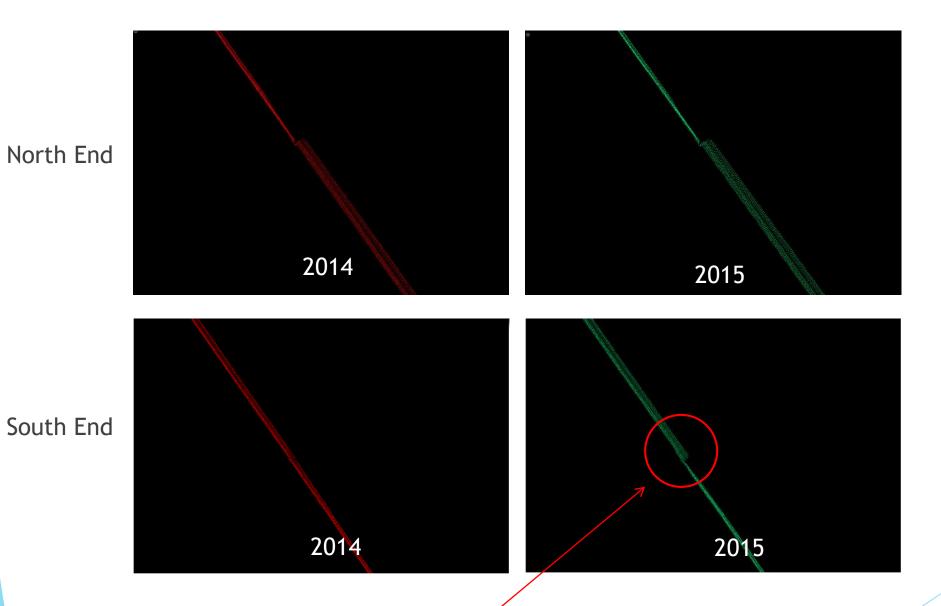
Using Mobile LiDAR



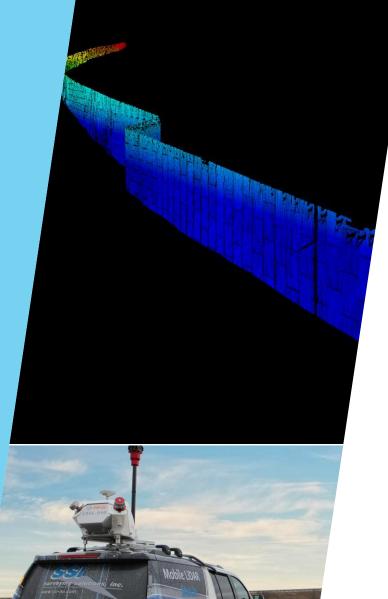
Collection

- Project spanned over a 2-year time period (in 2014 & 2015)
- Utilized Mobile LiDAR with multiple pass technique
- Collected data at highway speeds with zero disruption to daily traffic
- Dual head LiDAR scanner was critical to allow for "forward and backward looking data

Collection


Process

- SSI compared multiple passes between 2014 to ensure equipment was calibrated and ranging errors met project specifications
- The same process was performed for the 2015 scan data
- Once the 2014 and 2015 scans were validated independently, the two datasets were compared to show critical areas


2014 vs 2015 scan data comparison

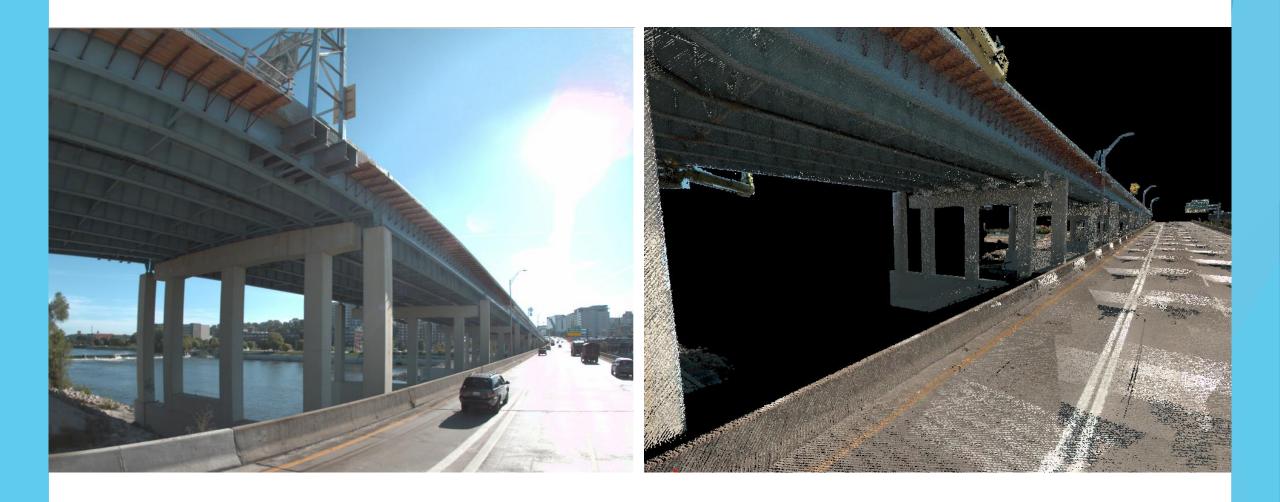
AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	BK	BL
273+20	273+30	273+40	273+50	273+60	273+70	273+80	273+90	274+0	274+10	274+20	274+30	274+40	274+50	274+60
0.011	0.009	0.072	0.079	0.074	0.074	0.069	0.067	0.064	0.064	0.062	0.058	0.023	0.021	0.026
-0.003	-0.007	0.072	0.079	0.074	0.074	0.068	0.067	0.064	0.063	0.062	0.057	0.023	0.015	0.020
-0.004	-0.007	0.070	0.072	0.072	0.064	0.069	0.066	0.063	0.064	0.061	0.055	-0.006	0.013	0.018
-0.003	-0.001	0.071	0.069	0.065	0.064	0.067	0.062	0.062	0.058	0.057	0.058	-0.003	0.013	0.026
-0.004	-0.003	0.064	0.065	0.064	0.059	0.067	0.061	0.056	0.054	0.053	0.054	0.015	0.015	0.021
0.002	0.004	0.061	0.062	0.061	0.059	0.059	0.056	0.057	0.053	0.051	0.052	0.007	0.017	0.022
0.008	0.008	0.055	0.059	0.057	0.055	0.055	0.052	0.052	0.053	0.049	0.049	0.010	0.021	0.021
0.008	0.003	0.051	0.060	0.059	0.061	0.058	0.043	0.060	0.052	0.044	0.052	0.009	0.015	0.014
0.009	0.004	0.051	0.057	0.053	0.052	0.051	0.047	0.048	0.049	0.046	0.045	0.008	0.016	0.021
0.007	0.005	0.048	0.049	0.049	0.046	0.040	0.044	0.041	0.042	0.044	0.039	0.014	0.013	0.022
0.006	0.008	0.040	0.053	0.045	0.041	0.045	0.046	0.041	0.041	0.039	0.037	0.014	0.016	0.024
0.007	0.006	0.041	0.045	0.043	0.041	0.040	0.041	0.038	0.039	0.032	0.039	0.013	0.019	0.019
0.011	0.009	0.035	0.047	0.038	0.033	0.040	0.038	0.028	0.039	0.032	0.035	0.010	0.012	0.019
0.010	0.007	0.029	0.041	0.031	0.033	0.031	0.028	0.027	0.032	0.028	0.032	0.008	0.012	0.015
0.008	0.008	0.026	0.028	0.026	0.029	0.027	0.027	0.023	0.026	0.023	0.028	0.011	0.019	0.016
0.007	0.008	0.026	0.038	0.028	0.021	0.020	0.020	0.015	0.024	0.022	0.022	0.011	0.014	0.010
0.005	0.006	0.022	0.035	0.024	0.020	0.018	0.025	0.016	0.020	0.021	0.005	0.013	0.008	0.009
0.011	0.007	0.027	0.021	0.024	0.009	0.013	0.010	0.013	0.014	0.019	0.004	0.010	0.006	0.008

Any results over the established ranging noise error of +/- 0.02' was considered to a potential area of movement. The data clearly shows movement between stations 273+40 and 274+30.

This joint was identified as a critical area and confirmed by visual inspection.

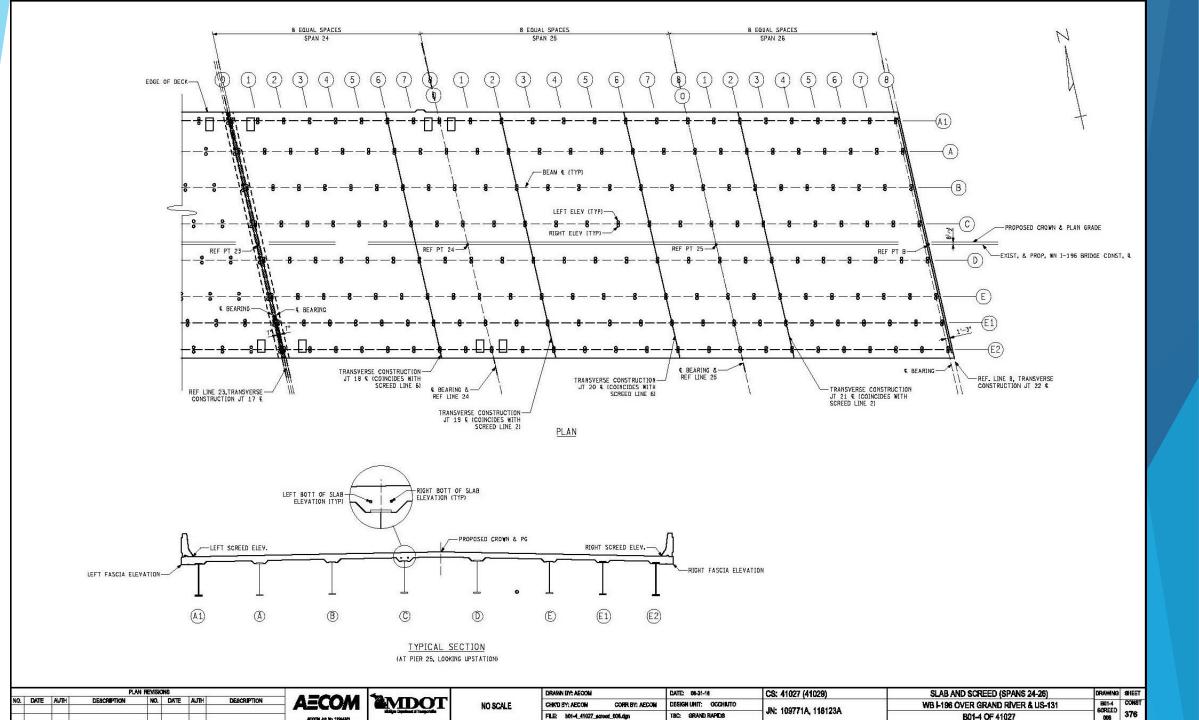
bile LIDAR

Project Recap


- This method was developed to quickly identify potential areas of movement along large stretches of freeway
- SSI's method eliminated field crew exposure to dangerous traffic conditions while also protecting the driving public
- This project also provided lessons learned to be considered moving forward on future projects
- SSI's program can be used to identify and target specific areas of concern resulting in much more efficient data collection. Once critical areas are identified further investigation and repair can be done

Beam Deflection

Mobile LiDAR



Prior to Construction

CS: 41027 (41029) JN: 109771A, 118123A SSI JOB NO. 19077

WB I-196 OVER THE GRAND RIVER

BEAM DEFLECTION COMPARISON

Bridge Location: WB I-196 over Grand River & US-131 B01-4 of 41027

POST-LOAD DEFLECTION

0.03

-0.06

surveying solutions, inc.

Bridge No.:

CONTRACTOR: ANLAAN MDOT SURVEYOR: SSI DATE: 10/31/2019

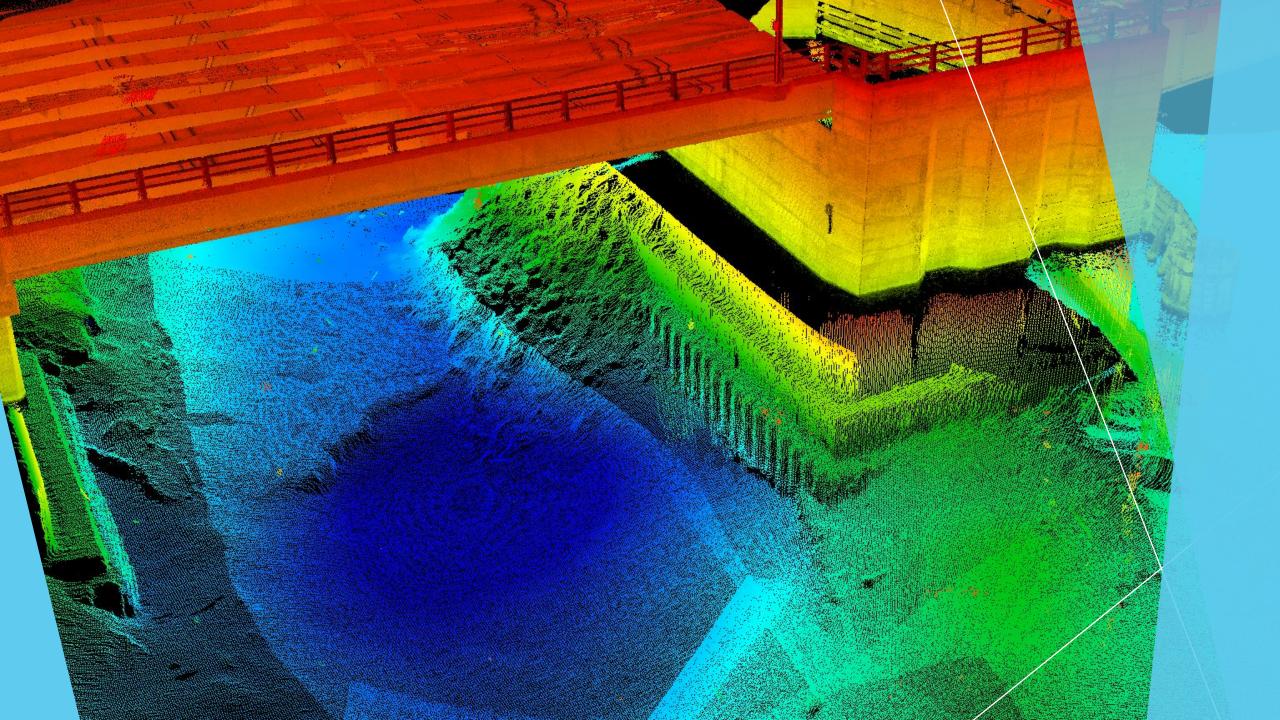
CONTRACT ID: 41027-109771

-0.03

SPAN 21 SPAN 22 SPAN 23 SPAN 24 SPAN 25 SPAN 26 BEAM DESCRIPTION PIER 20 MID SPAN PIER 21 PIER 23 MID SPAN PIER 24 PIER 25 MID SPAN ABUT B PIER 21 MID SPAN PIER 22 PIER 22 MID SPAN PIER 23 PIER 24 MID SPAN PIER 25 TOP OF BEAM (FROM HAUNCH 645.76 645.00 644.15 644.11 643.15 642.28 642.28 641.82 641.41 641.37 641.26 641.16 641.15 641.12 641.30 641.30 641.44 641.68 PRE-LOAD DEFLECTION 0.05 -0.04 -0.02 0.00 -0.10 -0.05 A1 BOTTOM BEAM (NEW DECK 639,99 639,20 638.35 638.27 637.34 636.44 636.45 636.01 635.66 636.62 636.47 636,31 636.34 636.47 636,46 636.48 636.69 636.93 POST-LOAD DEFLECTION 0.03 -0.01 -0.05 0.01 0.07 -0.01 BOTTOM OF BEAM (DECK ON) 639.31 638.54 637.75 637.65 636.72 635.88 635.87 635.65 635.27 636.63 636.57 636.40 636.41 636.73 636.55 636.66 636.92 637.28 DEFLECTION (DECK ON) 0.01 -0.04 0.08 0.06 0.25 -0.05 TOP BEAM (FROM HAUNCH 645.60 644.73 643.98 643.98 642.91 642.20 642.20 641.80 641.40 641.32 641.28 641.22 641.22 641.31 641.38 641.38 641.60 641.88 Α. PRE-LOAD DEFLECTION 0.00 -0.18 0.00 0.01 0.01 -0.03BOTTOM BEAM (NEW DECK) 636.89 633.36 638.54 637.68 637.64 636.69 635.88 635.87 635.59 635.27 636.59 636.54 636.42 636.40 636.56 636.56 636.62 637.20 0.02 -0.07 0.02 0.03 0.08 POST-LOAD DEFLECTION -0.02 BOTTOM OF BEAM (DECK ON) 637.26 639.51 638.84 637.98 637.85 637.00 636.03 636.10 635.93 635.52 636.91 636.86 636.72 636.80 636.86 636.89 637.02 637.68 DEFLECTION (DECK ON) 0.10 0.06 0.12 0.04 0.01 -0.03 641.55 641.55 TOP BEAM (FROM HAUNCH) 645.82 645.01 644.21 644.21 643.13 642.42 642.42 642.06 641.75 641.64 641.59 641.65 641.72 641.72 641.97 642.30 С PRE-LOAD DEFLECTION -0.01 -0.19 -0.03 0.00 0.01 -0.04 BOTTOM BEAM (NEW DECK) 639.57 638.77 637.93 637.87 636.86 636.06 636.10 635.81 635.54 636.91 636.83 636.74 636.76 636.93 636.92 636.96 637.22 637.60 POST-LOAD DEFLECTION -0.10 0.00 0.03 -0.06 0.02 -0.01 BOTTOM OF BEAM (DECK ON 639.50 638.84 637.92 637.80 637.06 636.03 636.08 635.94 635.55 636.95 636.81 636.76 636.82 636.79 636.90 637.06 637.26 637.77 DEFLECTION (DECK ON) 0.13 0.12 0.13 0.01 -0.07 -0.15 641.55 641.66 TOP BEAM (FROM HAUNCH) 645.78 644.95 644.16 644.16 643.10 642.33 642.39 642.06 641.70 641.66 641.60 641.59 641.75 641.75 641.96 642.34 D PRE-LOAD DEFLECTION -0.02 -0.17 0.01 0.00 -0.01 -0.03 BOTTOM BEAM (NEW DECK) 639.59 638.72 637.86 637.84 636.85 636.08 636.09 635.85 635.56 636.96 636.89 636.77 636.79 636.92 636.92 636.98 637.24 637.61 POST-LOAD DEFLECTION 0.00 -0.11 0.02 0.02 0.06 -0.06 BOTTOM OF BEAM (DECK ON) 637.16 637.67 639.29 638.64 637.70 637.59 636.79 635.90 635.91 635.73 635.36 636.77 636.72 636.67 636.70 636.59 636.81 636.92 DEFLECTION (DECK ON) 0.14 0.04 0.10 0.00 -0.16 -0.13 TOP BEAM (FROM HAUNCH) 645.56 644.74 643.96 643.96 642.91 642.23 642.23 641.89 641.51 641.46 641.45 641.42 641.42 641.54 641.62 641.62 641.86 642.23 F PRE-LOAD DEFLECTION -0.02 -0.19 0.02 0.01 0.02 -0.06 BOTTOM BEAM (NEW DECK) 639.34 638.49 637.64 637.62 636.67 635.90 635.91 635.68 635.35 636.76 636.73 636.64 636.66 636.82 636.79 636.84 637.15 637.54 POST-LOAD DEFLECTION 0.00 -0.09 0.05 0.03 0.10 -0.04644.80 TOP OF BEAM (FROM HAUNCH 645.58 643.91 642.97 642.16 641.40 641.52 641.24 641.25 641.42 641.42 641.68 642.05 643.91 642.16 641.75 641.36 641.24 PRE-LOAD DEFLECTION 0.05 -0.06 -0.03 -0.02-0.08 -0.05 E1 639.01 638.13 638.07 637.18 636.34 636.34 635.96 635.65 636.80 636.62 636.43 636.54 636.59 636.91 BOTTOM BEAM (NEW DECK) 639.84 636.43 636.61 637.28 POST-LOAD DEFLECTION 0.02 -0.03 -0.03 0.00 0.03 -0.03 641.76 641.61 TOP OF BEAM (FROM HAUNCH 645.58 644.80 643.92 643.32 642.98 642.17 642.17 641.40 641.37 641.28 641.23 641.23 641.25 641.42 641.42 641.90 PRE-LOAD DEFLECTION -0.08 -0.05 0.05 -0.06 -0.02-0.02E2 638.12 638.08 637.15 636.34 636.35 635.99 635.67 636.65 636.54 636.43 636.41 636.51 636.60 636.60 636.84 BOTTOM BEAM (NEW DECK) 639.84 639.01 637.15

-0.02

0.00


0.00

